File size: 2,421 Bytes
193db9d
 
 
 
98bfd66
193db9d
98bfd66
193db9d
 
 
 
98bfd66
 
 
 
55d797c
d43ec9f
193db9d
98bfd66
02b7dec
5d637a7
d43ec9f
193db9d
98bfd66
 
 
7985347
02b7dec
ee5d50c
193db9d
55d797c
 
193db9d
98bfd66
 
193db9d
 
98bfd66
 
 
 
 
193db9d
 
98bfd66
 
 
 
 
 
 
 
 
 
 
 
3a1af80
98bfd66
54e2d5b
55d797c
 
193db9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os

from huggingface_hub import HfApi

# --------------* Secrets *----------------------------------------
TOKEN = os.environ.get("HF_TOKEN")  # A read/write token for your org
ENV_NAME = os.getenv("ENV_NAME", "test")  # Use advcal for production, test for testing
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
COHERE_API_KEY = os.environ.get("COHERE_API_KEY")

# ------------------------ ENV VARS --------------------------------
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
HF_HOME = os.getenv("HF_HOME", ".hf")

# Change to your org - don't forget to create a results and request dataset, with the correct format!
OWNER = "qanta-challenge"

# --------------* READ-ONLY REPOS *---------------------------------
REPO_ID = f"{OWNER}/quizbowl-submission"
RESULTS_REPO = f"{OWNER}/advcal-results"
USERS_REPO = f"{OWNER}/registered-users"

# --------------* READ-WRITE REPOS *--------------------------------
REQUESTS_REPO = f"{OWNER}/{ENV_NAME}-requests"
LLM_CACHE_REPO = f"{OWNER}/{ENV_NAME}-llm-cache"


PLAYGROUND_DATASET = f"{OWNER}/acf-co24"

# ----------------------------------

# If you setup a cache later, just change HF_HOME
CACHE_PATH = ".cache"
EXAMPLES_PATH = "examples"

# Local caches
LLM_CACHE_PATH = os.path.join(HF_HOME, "llm-cache")
USERS_PATH = os.path.join(HF_HOME, "registered-users")
LOCAL_REQUESTS_PATH = os.path.join(HF_HOME, "eval-queue")
LOCAL_RESULTS_PATH = os.path.join(HF_HOME, "eval-results")
LITELLM_CACHE_DIR = os.getenv("LITELLM_CACHE_DIR", f"{CACHE_PATH}/litellm-cache")


# --------------* IMPORTANT LINKS *--------------------------------
QANTA_WEBSITE_URL = "https://sites.google.com/view/qanta/home"
COMPETITION_URL = "https://sites.google.com/view/qanta/2025-competition"
DOCS_REPO_URL = "https://github.com/qanta-challenge/QANTA25"
DOCS_URL = DOCS_REPO_URL + "/tree/main"
GITHUB_ISSUES_URL = DOCS_REPO_URL + "/issues"

CONTACT_EMAIL = "[email protected]"
DISCORD_URL = "https://discord.gg/ChmDVatJ6Y"
REGISTRATION_URL = "https://huggingface.co/spaces/qanta-challenge/register"
LEADERBOARD_URL = "https://huggingface.co/spaces/qanta-challenge/leaderboard"

LLM_CACHE_REFRESH_INTERVAL = 600  # seconds (30 minutes)
QUEUE_SYNC_INTERVAL = 600  # seconds (10 minutes)
SERVER_RESTART_INTERVAL = 2 * 24 * 60 * 60  # seconds (2 days)
LEADERBOARD_REFRESH_INTERVAL = 600  # seconds (10 minutes)

API = HfApi(token=TOKEN)