File size: 9,766 Bytes
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# %%
import json
import os
import time
from typing import Dict, Iterable, List, Optional, Tuple, Union

import litellm
from datasets import load_dataset
from litellm import completion

litellm.drop_params = True

# Set your API key - you can replace this with your actual key or use environment variables
os.environ["OPENAI_API_KEY"] = (
    "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"
)

DEFAULT_SYS_PROMPT = """
You are a Quizbowl expert. You will be given a question that's progressively revealed.
Your goal is to identify the answer as quickly as possible with high confidence.
Respond with a JSON object with two fields:
1. "answer": Your best guess for the answer
2. "confidence": Your confidence in your answer from 0.0 to 1.0

DO NOT include any explanation. ONLY return the JSON object.
"""


class QuizbowlAgent:
    """
    An agent for playing Quizbowl with two modes:
    1. Tossup mode: Fast and direct with confidence calibration for buzzing
    2. Bonus round mode: Provides guess, rationale, and confidence
    """

    def __init__(
        self,
        model: str = "gpt-4o-mini",
        buzz_threshold: float = 0.85,
        temperature: float = 0.2,
        system_prompt: str = DEFAULT_SYS_PROMPT,
    ):
        """
        Initialize the QuizbowlAgent.

        Args:
            model: The LLM model to use for answering
            buzz_threshold: Confidence threshold for buzzing in tossup mode (0-1)
            temperature: Temperature for model sampling
        """
        self.model = model
        self.buzz_threshold = buzz_threshold
        self.temperature = temperature
        self.system_prompt = system_prompt

    def _process_question_runs(self, question_runs: List[str]) -> List[str]:
        """Process question runs to extract increasing amounts of text."""
        # For simpler testing, just return the runs as they are in the dataset
        return question_runs

    def _get_agent_response(self, prompt: str, system_prompt: str) -> Dict:
        """Get response from the LLM model."""
        messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]

        start_time = time.time()
        response = completion(
            model=self.model,
            messages=messages,
            temperature=self.temperature,
            max_tokens=150,  # Limit token usage for faster responses
        )
        response_time = time.time() - start_time

        return response, response_time

    def _extract_confidence_and_answer(self, content: str) -> Tuple[str, float]:
        """Extract the answer and confidence score from the model response."""
        try:
            # Try to parse JSON from the response
            data = json.loads(content)
            answer = data.get("answer", "")
            confidence = float(data.get("confidence", 0.0))
            return answer, confidence
        except (json.JSONDecodeError, ValueError):
            # Fallback if parsing fails
            lines = content.strip().split("\n")
            answer = lines[0] if lines else ""
            confidence = 0.5  # Default confidence

            # Try to extract confidence from text
            for line in lines:
                if "confidence:" in line.lower():
                    try:
                        confidence = float(line.lower().split("confidence:")[1].strip())
                    except (ValueError, IndexError):
                        pass

            return answer, confidence

    def tossup_mode(self, question_runs: List[str]) -> Iterable[Dict]:
        """
        Process a tossup question and decide when to buzz based on confidence.

        Args:
            question_runs: Progressive reveals of the question text

        Yields:
            Dict with answer, confidence, and whether to buzz
        """

        for i, question_text in enumerate(question_runs):
            prompt = f"Question: {question_text}\n\nProvide your answer and confidence level:"

            response, response_time = self._get_agent_response(prompt, DEFAULT_SYS_PROMPT)
            content = response.choices[0].message.content

            answer, confidence = self._extract_confidence_and_answer(content)

            result = {
                "answer": answer,
                "confidence": confidence,
                "buzz": confidence >= self.buzz_threshold,
                "question_fragment": question_text,
                "position": i + 1,
                "full_response": content,
                "response_time": response_time,
            }

            yield result

            # If we've reached the confidence threshold, buzz and stop
            if confidence >= self.buzz_threshold:
                return

    def tossup_mode_top5(self, question_runs: List[str]) -> Iterable[Dict]:
        """
        Process a tossup question and provide the top 5 guesses with confidence levels.

        Args:
            question_runs: Progressive reveals of the question text

        Returns:
            Dict with top 5 answers, their confidences, and whether to buzz
        """

        for i, question_text in enumerate(question_runs):
            prompt = f"Question: {question_text}\n\nProvide your top 5 answers and confidence levels."

            response, response_time = self._get_agent_response(prompt, self.system_prompt)
            content = response.choices[0].message.content

            try:
                # Try to parse JSON from the response
                data = json.loads(content)
                guesses = data.get("guesses", [])
            except (json.JSONDecodeError, ValueError):
                # Fallback if parsing fails
                guesses = []

            result = {
                "guesses": guesses,
                "buzz": any(guess["confidence"] >= self.buzz_threshold for guess in guesses),
                "question_fragment": question_text,
                "position": i + 1,
                "full_response": content,
                "response_time": response_time,
            }

            yield result

            # If any guess reaches the confidence threshold, buzz and stop
            if result["buzz"]:
                return

    def bonus_round_mode(self, question: str) -> Dict:
        """
        Process a bonus round question with detailed analysis.

        Args:
            question: The bonus question text

        Returns:
            Dict with answer, rationale, and confidence
        """
        system_prompt = """
        You are a Quizbowl expert answering a bonus question. Provide:
        1. Your direct answer
        2. A very brief and crisp one line rationale for your answer (key clues that led to it)
        3. Your confidence level (0.0-1.0)
        
        Respond with a JSON object with these three fields:
        {
            "answer": "Your answer here",
            "rationale": "Your reasoning here",
            "confidence": 0.XX
        }
        """

        prompt = f"Bonus Question: {question}\n\nProvide your answer, rationale, and confidence:"

        response = self._get_agent_response(prompt, system_prompt)
        content = response.choices[0].message.content

        try:
            # Try to parse JSON
            result = json.loads(content)
            # Ensure all fields are present
            if not all(k in result for k in ["answer", "rationale", "confidence"]):
                raise ValueError("Missing fields in response")
        except (json.JSONDecodeError, ValueError):
            # If parsing fails, extract manually
            lines = content.strip().split("\n")
            result = {"answer": "", "rationale": "", "confidence": 0.5}

            for line in lines:
                if line.lower().startswith("answer:"):
                    result["answer"] = line[7:].strip()
                elif line.lower().startswith("rationale:"):
                    result["rationale"] = line[10:].strip()
                elif line.lower().startswith("confidence:"):
                    try:
                        result["confidence"] = float(line[11:].strip())
                    except ValueError:
                        pass

        return result


# %%
# Example usage
if __name__ == "__main__":
    # Load the Quizbowl dataset
    ds_name = "umdclip/leaderboard_co_set"
    ds = load_dataset(ds_name, split="train")

    # Create the agent
    agent = QuizbowlAgent(model="gpt-4-turbo", buzz_threshold=0.85)

    # Example for tossup mode
    print("\n=== TOSSUP MODE EXAMPLE ===")
    sample_question = ds[0]
    print(sample_question["question_runs"][-1])
    print(sample_question["gold_label"])
    question_runs = sample_question["question_runs"]

    results = agent.tossup_mode(question_runs)
    for result in results:
        print(f"Guess at position {result['position']}: {result['answer']}")
        print(f"Confidence: {result['confidence']}")
        if result["buzz"]:
            print("Buzzed!\n")

    results = agent.tossup_mode_top5(question_runs)
    for result in results:
        guesses = [f"{guess['answer']} ({guess['confidence']})" for guess in result["guesses"]]
        print(f"Guesses at position {result['position']}: {', '.join(guesses)}")
        if result["buzz"]:
            print("Buzzed!")

    # Example for bonus round mode
    print("\n=== BONUS ROUND MODE EXAMPLE ===")
    bonus_question = sample_question["question_runs"][-1]

    bonus_result = agent.bonus_round_mode(bonus_question)
    print(f"Answer: {bonus_result['answer']}")
    print(f"Rationale: {bonus_result['rationale']}")
    print(f"Confidence: {bonus_result['confidence']}")

# %%