File size: 8,096 Bytes
193db9d
9756440
193db9d
 
 
9756440
 
193db9d
9756440
193db9d
1758388
 
 
 
 
 
 
 
 
 
 
 
e00ec4e
193db9d
 
 
 
9756440
 
 
 
 
193db9d
9756440
193db9d
0bab47c
 
 
193db9d
 
 
 
 
9756440
 
 
193db9d
9756440
e00ec4e
193db9d
 
 
9756440
193db9d
9756440
 
 
193db9d
9756440
193db9d
 
 
 
9756440
193db9d
9756440
 
 
 
 
 
 
193db9d
9756440
 
 
 
 
 
 
 
 
 
193db9d
9756440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193db9d
 
9756440
 
 
193db9d
9756440
 
 
193db9d
9756440
193db9d
9756440
193db9d
9756440
193db9d
9756440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9756440
 
 
 
 
 
 
 
 
 
1758388
 
9756440
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
from typing import Literal

import yaml

from app_configs import UNSELECTED_VAR_NAME
from components import typed_dicts as td
from components import utils
from components.structs import ModelStepUIState, PipelineState, PipelineUIState, TossupPipelineState
from workflows.factory import create_new_llm_step
from workflows.structs import Buzzer, BuzzerMethod, ModelStep, TossupWorkflow, Workflow


def get_output_panel_state(workflow: Workflow) -> dict:
    state = {
        "variables": workflow.get_available_variables(),
        "models": workflow.get_step_model_selections(),
        "output_models": workflow.get_output_model_selections(),
    }
    if isinstance(workflow, TossupWorkflow):
        state["buzzer"] = workflow.buzzer.model_dump(exclude_defaults=False)
    return state


class PipelineStateManager:
    """Manages a pipeline of multiple steps."""

    def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> PipelineState:
        """Make a state from a state dictionary."""
        return PipelineState(**state_dict)

    def get_formatted_config(self, state_dict: td.PipelineStateDict, format: Literal["json", "yaml"] = "yaml") -> str:
        """Get the full pipeline configuration."""
        state = self.make_pipeline_state(state_dict)
        config = state.workflow.model_dump(exclude_defaults=True)
        if isinstance(state.workflow, TossupWorkflow):
            buzzer_config = state.workflow.buzzer.model_dump(exclude_defaults=False)
            config["buzzer"] = buzzer_config
        if format == "yaml":
            return yaml.dump(config, default_flow_style=False, sort_keys=False, indent=4)
        else:
            return json.dumps(config, indent=4, sort_keys=False)

    def add_step(
        self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int = -1, name=""
    ) -> td.PipelineStateDict:
        """Create a new step and return its state."""
        state = self.make_pipeline_state(state_dict)
        step_id = state.get_new_step_id()
        step_name = name or f"Step {state.n_steps + 1}"
        new_step = create_new_llm_step(step_id=step_id, name=step_name)
        state = state.insert_step(position, new_step)
        return state.model_dump(), not pipeline_change

    def remove_step(
        self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int
    ) -> td.PipelineStateDict:
        """Remove a step from the pipeline."""
        state = self.make_pipeline_state(state_dict)
        if 0 <= position < state.n_steps:
            state = state.remove_step(position)
        else:
            raise ValueError(f"Invalid step position: {position}")
        return state.model_dump(), not pipeline_change

    def _move_step(
        self, state_dict: td.PipelineStateDict, position: int, direction: Literal["up", "down"]
    ) -> tuple[td.PipelineStateDict, bool]:
        state = self.make_pipeline_state(state_dict)
        old_order = list(state.ui_state.step_ids)
        utils.move_item(state.ui_state.step_ids, position, direction)
        return state.model_dump(), old_order != list(state.ui_state.step_ids)

    def move_up(self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int) -> td.PipelineStateDict:
        """Move a step up in the pipeline."""
        new_state_dict, change = self._move_step(state_dict, position, "up")
        if change:
            pipeline_change = not pipeline_change
        return new_state_dict, pipeline_change

    def move_down(
        self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int
    ) -> td.PipelineStateDict:
        """Move a step down in the pipeline."""
        new_state_dict, change = self._move_step(state_dict, position, "down")
        if change:
            pipeline_change = not pipeline_change
        return new_state_dict, pipeline_change

    def update_model_step_state(
        self, state_dict: td.PipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState
    ) -> td.PipelineStateDict:
        """Update a particular model step in the pipeline."""
        state = self.make_pipeline_state(state_dict)
        state = state.update_step(model_step, ui_state)
        return state.model_dump()

    def update_output_variables(
        self, state_dict: td.PipelineStateDict, target: str, produced_variable: str
    ) -> td.PipelineStateDict:
        if produced_variable == UNSELECTED_VAR_NAME:
            produced_variable = None
        """Update the output variables for a step."""
        state = self.make_pipeline_state(state_dict)
        state.workflow.outputs[target] = produced_variable
        return state.model_dump()

    def update_model_step_ui(
        self, state_dict: td.PipelineStateDict, step_ui: ModelStepUIState, step_id: str
    ) -> td.PipelineStateDict:
        """Update a step in the pipeline."""
        state = self.make_pipeline_state(state_dict)
        state.ui_state.steps[step_id] = step_ui.model_copy()
        return state.model_dump()

    def get_all_variables(self, state_dict: td.PipelineStateDict, model_step_id: str | None = None) -> list[str]:
        """Get all variables from all steps."""
        return self.make_pipeline_state(state_dict)

    def parse_yaml_workflow(self, yaml_str: str) -> Workflow:
        """Parse a YAML workflow."""
        workflow = yaml.safe_load(yaml_str)
        return Workflow(**workflow)

    def update_workflow_from_code(self, yaml_str: str) -> td.PipelineStateDict:
        """Update a workflow from a YAML string."""
        workflow = self.parse_yaml_workflow(yaml_str)
        return PipelineState.from_workflow(workflow).model_dump()


class TossupPipelineStateManager(PipelineStateManager):
    """Manages a tossup pipeline state."""

    def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> TossupPipelineState:
        """Make a state from a state dictionary."""
        return TossupPipelineState(**state_dict)

    def parse_yaml_workflow(self, yaml_str: str) -> TossupWorkflow:
        """Parse a YAML workflow."""
        workflow = yaml.safe_load(yaml_str)
        return TossupWorkflow(**workflow)

    def update_workflow_from_code(self, yaml_str: str, change_state: bool) -> tuple[td.PipelineStateDict, bool]:
        """Update a workflow from a YAML string."""
        workflow = self.parse_yaml_workflow(yaml_str)
        return TossupPipelineState.from_workflow(workflow).model_dump(), not change_state

    def update_model_step_state(
        self, state_dict: td.TossupPipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState
    ) -> td.TossupPipelineStateDict:
        """Update a particular model step in the pipeline."""
        state = self.make_pipeline_state(state_dict)
        state = state.update_step(model_step, ui_state)
        state.workflow = state.workflow.refresh_buzzer()
        return state.model_dump()

    def update_output_variables(
        self, state_dict: td.TossupPipelineStateDict, target: str, produced_variable: str
    ) -> td.TossupPipelineStateDict:
        if produced_variable == UNSELECTED_VAR_NAME:
            produced_variable = None
        """Update the output variables for a step."""
        state = self.make_pipeline_state(state_dict)
        state.workflow.outputs[target] = produced_variable
        state.workflow = state.workflow.refresh_buzzer()
        return state.model_dump()

    def update_buzzer(
        self,
        state_dict: td.TossupPipelineStateDict,
        confidence_threshold: float,
        method: str,
        tokens_prob: float | None,
    ) -> td.TossupPipelineStateDict:
        """Update the buzzer."""
        state = self.make_pipeline_state(state_dict)
        prob_threshold = float(tokens_prob) if tokens_prob and tokens_prob > 0 else None
        if method == BuzzerMethod.OR and prob_threshold is None:
            prob_threshold = 0.0
        state.workflow.buzzer = Buzzer(
            method=method, confidence_threshold=confidence_threshold, prob_threshold=prob_threshold
        )
        return state.model_dump()