File size: 5,592 Bytes
193db9d 973519b 193db9d 633b045 193db9d 633b045 973519b 193db9d 973519b 193db9d 973519b 193db9d 973519b 193db9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import datasets
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from app_configs import AVAILABLE_MODELS, DEFAULT_SELECTIONS, THEME
from components.quizbowl.bonus import BonusInterface
from components.quizbowl.tossup import TossupInterface
from display.custom_css import css_pipeline, css_tossup
# Constants
from envs import (
API,
EVAL_REQUESTS_PATH,
EVAL_RESULTS_PATH,
PLAYGROUND_DATASET_NAMES,
QUEUE_REPO,
REPO_ID,
RESULTS_REPO,
TOKEN,
)
from workflows import factory
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
js_preamble = """
<link href="https://fonts.cdnfonts.com/css/roboto-mono" rel="stylesheet">
<script>
const gradioApp = document.getElementsByTagName('gradio-app')[0];
console.log("Gradio app:", gradioApp);
console.log(gradioApp.querySelectorAll('.token'));
console.log(document.querySelectorAll('.token'));
// Function to trigger Python callback
const setHiddenIndex = (index) => {
console.log("Setting hidden index to:", index);
const hiddenIndex = gradioApp.querySelector("#hidden-index textarea");
if (hiddenIndex) {
hiddenIndex.value = index;
let event = new Event("input", { bubbles: true});
Object.defineProperty(event, "target", { value: hiddenIndex});
hiddenIndex.dispatchEvent(event);
}
};
// Add event listeners to all tokens
function setupTokenListeners() {
const tokens = gradioApp.querySelectorAll('.token');
console.log("Tokens:", tokens);
tokens.forEach(token => {
token.addEventListener('mouseover', function() {
const index = parseInt(this.getAttribute('data-index'));
console.log("Mouseover token index:", index);
// Reset all tokens
gradioApp.querySelectorAll('.token').forEach(el => {
el.classList.remove('highlighted');
});
// Highlight this token
this.classList.add('highlighted');
// Update the hidden index to trigger the Python callback
setHiddenIndex(index);
});
});
}
console.log("Preamble complete");
document.addEventListener("DOMContentLoaded", function() {
// Setup initial listeners
console.log("DOM fully loaded and parsed");
setupTokenListeners();
// Setup a mutation observer to handle dynamically added tokens
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.addedNodes.length) {
setupTokenListeners();
}
});
});
// Start observing the token container for changes
const tokenContainer = gradioApp.querySelector('.token-container');
console.log("Token container:", tokenContainer);
if (tokenContainer) {
observer.observe(tokenContainer.parentNode, { childList: true, subtree: true });
}
console.log("Listener setup complete");
});
</script>
"""
def load_dataset(mode: str):
if mode == "tossup":
ds = datasets.load_dataset(PLAYGROUND_DATASET_NAMES["tossup"], split="eval")
ds = ds.filter(lambda x: x["qid"].split("-")[2] == "1" and int(x["qid"].split("-")[3]) <= 10)
elif mode == "bonus":
ds = datasets.load_dataset(PLAYGROUND_DATASET_NAMES["bonus"], split="eval")
ds = ds.filter(lambda x: x["qid"].split("-")[2] == "1" and int(x["qid"].split("-")[3]) <= 10)
else:
raise ValueError(f"Invalid mode: {mode}")
return ds
def main():
tossup_ds = load_dataset("tossup")
bonus_ds = load_dataset("bonus")
app = gr.Blocks(
css=css_pipeline + css_tossup,
head=js_preamble,
theme=THEME,
title="Quizbowl Bot",
)
with app:
with gr.Tabs():
with gr.Tab("Tossup Agents"):
defaults = DEFAULT_SELECTIONS["tossup"] | {
"init_workflow": factory.create_quizbowl_simple_workflow(),
"simple_workflow": False,
}
tossup_interface = TossupInterface(app, tossup_ds, AVAILABLE_MODELS, defaults)
# ModelStepComponent(value=factory.create_quizbowl_simple_step())
with gr.Tab("Bonus Round Agents"):
defaults = DEFAULT_SELECTIONS["bonus"] | {
"init_workflow": factory.create_quizbowl_bonus_simple_workflow(),
"simple_workflow": True,
}
bonus_interface = BonusInterface(app, bonus_ds, AVAILABLE_MODELS, defaults)
app.queue(default_concurrency_limit=40).launch()
if __name__ == "__main__":
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
main()
|