File size: 10,339 Bytes
193db9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import json
from unittest.mock import patch
import pytest
from workflows.errors import CyclicDependencyError, WorkflowError
from workflows.executors import (
create_processed_inputs,
execute_model_step,
execute_workflow,
lower,
upper,
)
from workflows.structs import InputField, ModelStep, OutputField, Workflow
# Tests for utility functions
def test_upper():
"""Test the upper function with different input types."""
assert upper("hello") == "HELLO"
assert upper("Hello World") == "HELLO WORLD"
assert upper("") == ""
# Non-string inputs should be returned unchanged
assert upper(123) == 123
assert upper([1, 2, 3]) == [1, 2, 3]
assert upper(None) is None
def test_lower():
"""Test the lower function with different input types."""
assert lower("HELLO") == "hello"
assert lower("Hello World") == "hello world"
assert lower("") == ""
# Non-string inputs should be returned unchanged
assert lower(123) == 123
assert lower([1, 2, 3]) == [1, 2, 3]
assert lower(None) is None
# Tests for create_processed_inputs
def test_create_processed_inputs_basic():
"""Test basic input processing without transformations."""
step = ModelStep(
id="test_step",
model="gpt-4",
provider="openai",
call_type="llm",
system_prompt="Test prompt",
input_fields=[InputField(name="text", description="Input text", variable="input_text")],
output_fields=[],
)
available_vars = {"input_text": "Hello World"}
result = create_processed_inputs(step, available_vars)
assert result == {"text": "Hello World"}
def test_create_processed_inputs_with_transformation():
"""Test input processing with transformation functions."""
step = ModelStep(
id="test_step",
model="gpt-4",
provider="openai",
call_type="llm",
system_prompt="Test prompt",
input_fields=[
InputField(name="upper_text", description="Uppercase text", variable="input_text", func="upper"),
InputField(name="lower_text", description="Lowercase text", variable="input_caps", func="lower"),
],
output_fields=[],
)
available_vars = {"input_text": "hello", "input_caps": "WORLD"}
result = create_processed_inputs(step, available_vars)
assert result == {"upper_text": "HELLO", "lower_text": "world"}
def test_create_processed_inputs_missing_var():
"""Test that appropriate error is raised when a variable is missing."""
step = ModelStep(
id="test_step",
model="gpt-4",
provider="openai",
call_type="llm",
system_prompt="Test prompt",
input_fields=[InputField(name="text", description="Input text", variable="missing_var")],
output_fields=[],
)
available_vars = {"input_text": "Hello World"}
with pytest.raises(KeyError):
create_processed_inputs(step, available_vars)
def test_create_processed_inputs_unknown_func():
"""Test that appropriate error is raised when an unknown function is specified."""
step = ModelStep(
id="test_step",
model="gpt-4",
provider="openai",
call_type="llm",
system_prompt="Test prompt",
input_fields=[InputField(name="text", description="Input text", variable="input_text", func="unknown_func")],
output_fields=[],
)
available_vars = {"input_text": "Hello World"}
# This should raise an error when the function isn't found
with pytest.raises(Exception):
create_processed_inputs(step, available_vars)
# Tests for execute_model_step
@patch("workflows.executors.litellm.completion")
def test_execute_model_step_success(mock_completion):
"""Test successful execution of a model step with mocked litellm response."""
# Mock the litellm response
mock_response = {"choices": [{"message": {"content": json.dumps({"summary": "This is a summary"})}}]}
mock_completion.return_value = mock_response
# Create a test step
step = ModelStep(
id="summarize",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Summarize the text",
input_fields=[InputField(name="text", description="Text to summarize", variable="input_text")],
output_fields=[OutputField(name="summary", description="Summary of the text", type="str")],
)
# Execute the step
result = execute_model_step(step, {"input_text": "Long text to be summarized..."})
# Verify the results
assert result == {"summary": "This is a summary"}
# Verify the litellm call was made correctly
mock_completion.assert_called_once()
args, kwargs = mock_completion.call_args
assert kwargs["model"] == "gpt-3.5-turbo"
assert "Summarize the text" in kwargs["messages"][0]["content"]
@patch("workflows.executors.litellm.completion")
def test_execute_model_step_error(mock_completion):
"""Test handling of errors in model step execution."""
# Make litellm raise an exception
mock_completion.side_effect = Exception("API Error")
# Create a test step
step = ModelStep(
id="summarize",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Summarize the text",
input_fields=[InputField(name="text", description="Text to summarize", variable="input_text")],
output_fields=[OutputField(name="summary", description="Summary of the text", type="str")],
)
# Execute the step - should raise an exception
with pytest.raises(Exception):
execute_model_step(step, {"input_text": "Long text to be summarized..."})
# Tests for execute_workflow
@patch("workflows.executors.execute_model_step")
def test_execute_workflow_simple(mock_execute_step):
"""Test execution of a simple workflow with a single step."""
# Configure mock to return expected outputs
mock_execute_step.return_value = {"summary": "This is a summary"}
# Create a simple workflow
step = ModelStep(
id="summarize",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Summarize the text",
input_fields=[InputField(name="text", description="Text to summarize", variable="input_text")],
output_fields=[OutputField(name="summary", description="Summary of the text", type="str")],
)
workflow = Workflow(steps={"summarize": step}, inputs=["input_text"], outputs={"summary": "summarize.summary"})
# Execute the workflow
result = execute_workflow(workflow, {"input_text": "Long text to be summarized..."})
# Verify the results
assert result == {"summary": "This is a summary"}
# Verify execute_model_step was called correctly
mock_execute_step.assert_called_once()
@patch("workflows.executors.execute_model_step")
def test_execute_workflow_multi_step(mock_execute_step):
"""Test execution of a multi-step workflow with dependencies."""
# Configure mock to return different values based on the step
def side_effect(step, available_vars):
if step.id == "extract":
return {"entities": ["Apple", "product"]}
elif step.id == "analyze":
return {"sentiment": "positive"}
return {}
mock_execute_step.side_effect = side_effect
# Create extract step
extract_step = ModelStep(
id="extract",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Extract entities",
input_fields=[InputField(name="text", description="Text to analyze", variable="input_text")],
output_fields=[OutputField(name="entities", description="Extracted entities", type="list[str]")],
)
# Create analyze step that depends on extract step
analyze_step = ModelStep(
id="analyze",
model="gpt-4",
provider="openai",
call_type="llm",
system_prompt="Analyze sentiment",
input_fields=[InputField(name="entities", description="Entities to analyze", variable="extract.entities")],
output_fields=[OutputField(name="sentiment", description="Sentiment analysis", type="str")],
)
workflow = Workflow(
steps={"extract": extract_step, "analyze": analyze_step},
inputs=["input_text"],
outputs={"entities": "extract.entities", "sentiment": "analyze.sentiment"},
)
# Execute the workflow
result = execute_workflow(workflow, {"input_text": "Apple is launching a new product tomorrow."})
# Verify the results
assert result == {"entities": ["Apple", "product"], "sentiment": "positive"}
# Verify execute_model_step was called twice (once for each step)
assert mock_execute_step.call_count == 2
def test_execute_workflow_missing_input():
"""Test that an error is raised when a required input is missing."""
step = ModelStep(
id="summarize",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Summarize the text",
input_fields=[InputField(name="text", description="Text to summarize", variable="input_text")],
output_fields=[OutputField(name="summary", description="Summary of the text", type="str")],
)
workflow = Workflow(steps={"summarize": step}, inputs=["input_text"], outputs={"summary": "summarize.summary"})
# Execute with missing input
with pytest.raises(WorkflowError, match="Missing required workflow input"):
execute_workflow(workflow, {})
@patch("workflows.executors.create_dependency_graph")
def test_execute_workflow_cyclic_dependency(mock_dependency_graph):
"""Test that a cyclic dependency in the workflow raises an appropriate error."""
# Make create_dependency_graph raise a CyclicDependencyError
mock_dependency_graph.side_effect = CyclicDependencyError()
step = ModelStep(
id="test",
model="gpt-3.5-turbo",
provider="openai",
call_type="llm",
system_prompt="Test",
input_fields=[],
output_fields=[],
)
workflow = Workflow(steps={"test": step}, inputs=[], outputs=[])
# This should propagate the CyclicDependencyError
with pytest.raises(CyclicDependencyError):
execute_workflow(workflow, {})
|