import gradio as gr import skops.io as sio #pipe = sio.load("./Model/drug_pipeline.skops", trusted=True) pipe = sio.load("./Model/drug_pipeline.skops",trusted = ['numpy.dtype']) def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio): """Predict drugs based on patient features. Args: age (int): Age of patient sex (str): Sex of patient blood_pressure (str): Blood pressure level cholesterol (str): Cholesterol level na_to_k_ratio (float): Ratio of sodium to potassium in blood Returns: str: Predicted drug label """ features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio] predicted_drug = pipe.predict([features])[0] return f"Predicted Drug: {predicted_drug}" inputs = [ gr.Slider(15, 74, step=1, label="Age"), gr.Radio(["M", "F"], label="Sex"), gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"), gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"), gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"), ] outputs = [gr.Label(num_top_classes=5)] examples = [ [30, "M", "HIGH", "NORMAL", 15.4], [35, "F", "LOW", "NORMAL", 8], [50, "M", "HIGH", "HIGH", 34], ] title = "Drug Classification" description = "Enter the details to correctly identify Drug type?" article = "This app is a part of the Beginner's Guide to CI/CD for Machine Learning. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions." gr.Interface( fn=predict_drug, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description, article=article, theme=gr.themes.Soft(), ).launch()