# login as a privileged user. import os HF_TOKEN = os.environ.get("HF_TOKEN") from huggingface_hub import login login(token=HF_TOKEN) from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from pyreft import ReftModel MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Ethos-Chat with ReFT ### Ethos-Chat is a [GOODY-2](https://www.goody2.ai/chat) imitator built with ReFT. It is trained with 5 training examples under 30 seconds. You can train your own ReFT agent and share it on HuggingFace by following this [tutorial](https://github.com/stanfordnlp/pyreft/tree/main/examples/gradio/train_and_share.ipynb)! """ LICENSE = """

--- As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-7b-chat-hf" # not gated version. model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16 ) reft_model = ReftModel.load("pyvene/reft_goody2", model, from_huggingface_hub=True) reft_model.set_device("cuda") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = True prompt_no_input_template = """[INST] <> You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <> %s [/INST] """ @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, ) -> Iterator[str]: # tokenize and prepare the input prompt = prompt_no_input_template % message prompt = tokenizer(prompt, return_tensors="pt").to(model.device) input_ids = prompt["input_ids"] attention_mask = prompt["attention_mask"] if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") base_unit_location = input_ids.shape[-1] - 1 # last position streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = { "base": {"input_ids": input_ids, "attention_mask": attention_mask}, "unit_locations": {"sources->base": (None, [[[base_unit_location]]])}, "max_new_tokens": max_new_tokens, "intervene_on_prompt": True, "streamer": streamer, "eos_token_id": tokenizer.eos_token_id, "early_stopping": True, "do_sample": False } t = Thread(target=reft_model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) ], stop_btn=None, examples=[ ["What's 2+2?"], ["Why is the sky blue?"], ["What's Apple's stock price?"], ["Plan a family road trip to Austin"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()