import torch import gradio as gr from PIL import Image from torchvision import transforms torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") model = torch.hub.load('pytorch/vision:v0.9.0', 'alexnet', pretrained=True) model.eval() def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Download ImageNet labels !wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "ALEXNET" description = "Gradio demo for Alexnet, the 2012 ImageNet winner achieved a top-5 error of 15.3%, more than 10.8 percentage points lower than that of the runner up. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
One weird trick for parallelizing convolutional neural networks | Github Repo
" examples = [ ['dog.jpg'] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()