pszemraj's picture
๐Ÿšธ kw based file naming
471b053
raw
history blame
6.24 kB
"""
utils.py - Utility functions for the project.
"""
import re
import subprocess
from datetime import datetime
from pathlib import Path
import torch
from natsort import natsorted
from typing import List
from nltk.tokenize import sent_tokenize, word_tokenize
from itertools import combinations
from collections import defaultdict
from rapidfuzz import fuzz
from nltk.corpus import stopwords
def validate_pytorch2(torch_version: str = None):
torch_version = torch.__version__ if torch_version is None else torch_version
pattern = r"^2\.\d+(\.\d+)*"
return True if re.match(pattern, torch_version) else False
def get_timestamp() -> str:
"""
get_timestamp - get a timestamp for the current time
Returns:
str, the timestamp
"""
return datetime.now().strftime("%Y%m%d_%H%M%S")
def truncate_word_count(text, max_words=512):
"""
truncate_word_count - a helper function for the gradio module
Parameters
----------
text : str, required, the text to be processed
max_words : int, optional, the maximum number of words, default=512
Returns
-------
dict, the text and whether it was truncated
"""
# split on whitespace with regex
words = re.split(r"\s+", text)
processed = {}
if len(words) > max_words:
processed["was_truncated"] = True
processed["truncated_text"] = " ".join(words[:max_words])
else:
processed["was_truncated"] = False
processed["truncated_text"] = text
return processed
def load_examples(src, filetypes=[".txt", ".pdf"]):
"""
load_examples - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
src = Path(src)
src.mkdir(exist_ok=True)
pdf_url = (
"https://www.dropbox.com/s/y92xy7o5qb88yij/all_you_need_is_attention.pdf?dl=1"
)
subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"])
examples = [f for f in src.iterdir() if f.suffix in filetypes]
examples = natsorted(examples)
# load the examples into a list
text_examples = []
for example in examples:
with open(example, "r") as f:
text = f.read()
text_examples.append([text, "base", 2, 1024, 0.7, 3.5, 3])
return text_examples
def load_example_filenames(example_path: str or Path):
"""
load_example_filenames - a helper function for the gradio module to load examples
Returns:
dict, the examples (filename:full path)
"""
example_path = Path(example_path)
# load the examples into a list
examples = {f.name: f for f in example_path.glob("*.txt")}
return examples
def extract_keywords(text: str, num_keywords: int = 3) -> List[str]:
"""
Extracts keywords from a text using the TextRank algorithm.
Args:
text: The text to extract keywords from.
num_keywords: The number of keywords to extract. Default is 5.
Returns:
A list of strings, where each string is a keyword extracted from the input text.
"""
# Remove stopwords from the input text
stop_words = set(stopwords.words("english"))
text = " ".join([word for word in text.lower().split() if word not in stop_words])
# Tokenize the text into sentences and words
sentences = sent_tokenize(text)
words = [word_tokenize(sentence) for sentence in sentences]
# Filter out words that are shorter than 3 characters
words = [[word for word in sentence if len(word) >= 3] for sentence in words]
# Create a graph of word co-occurrences
cooccur = defaultdict(lambda: defaultdict(int))
for sentence in words:
for w1, w2 in combinations(sentence, 2):
cooccur[w1][w2] += 1
cooccur[w2][w1] += 1
# Assign scores to words using the TextRank algorithm
scores = defaultdict(float)
for i in range(10):
for word in cooccur:
score = 0.15 + 0.85 * sum(
cooccur[word][other] / sum(cooccur[other].values()) * scores[other]
for other in cooccur[word]
)
scores[word] = score
# Sort the words by score and return the top num_keywords keywords
keywords = sorted(scores, key=scores.get, reverse=True)[:num_keywords]
# Use fuzzy matching to remove similar keywords
final_keywords = []
for keyword in keywords:
if not any(fuzz.ratio(keyword, other) > 70 for other in final_keywords):
final_keywords.append(keyword)
return final_keywords
def saves_summary(
summarize_output, outpath: str or Path = None, add_signature=True, **kwargs
):
"""
saves_summary - save the summary generated from summarize_via_tokenbatches() to a text file
summarize_output: output from summarize_via_tokenbatches()
outpath: path to the output file
add_signature: whether to add a signature to the output file
kwargs: additional keyword arguments to include in the output file
"""
sum_text = [f"\t{s['summary'][0]}\n" for s in summarize_output]
sum_scores = [f"\n - {round(s['summary_score'],4)}" for s in summarize_output]
scores_text = "\n".join(sum_scores)
full_summary = "\n".join(sum_text)
keywords = "_".join(extract_keywords(full_summary))
outpath = (
Path.cwd() / f"document_summary_{get_timestamp()}_{keywords}.txt"
if outpath is None
else Path(outpath)
)
with open(
outpath,
"w",
encoding="utf-8",
) as fo:
fo.writelines(full_summary)
fo.write("\n\n")
if add_signature:
fo.write("\n\n---\n\n")
fo.write("Generated with the Document Summarization space :)\n\n")
fo.write("https://hf.co/spaces/pszemraj/document-summarization\n\n")
with open(
outpath,
"a",
) as fo:
fo.write("\n")
fo.write(f"## Section Scores:\n\n")
fo.writelines(scores_text)
fo.write("\n\n")
fo.write(f"Date: {get_timestamp()}\n\n")
if kwargs:
fo.write("---\n\n")
fo.write("## Parameters:\n\n")
for key, value in kwargs.items():
fo.write(f"{key}: {value}\n")
return outpath