Spaces:
Running
Running
zhouxiangxin1998
commited on
Commit
Β·
06fad3c
1
Parent(s):
64d3477
fix interactive
Browse files
app.py
CHANGED
|
@@ -61,55 +61,63 @@ with demo:
|
|
| 61 |
inverse_folding_table = gr.components.DataFrame(
|
| 62 |
pd.read_csv('data/inverse_folding.csv'),
|
| 63 |
height=1000,
|
|
|
|
| 64 |
)
|
| 65 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
| 66 |
with gr.Row():
|
| 67 |
inverse_folding_table = gr.components.DataFrame(
|
| 68 |
pd.read_csv('data/structure_design.csv'),
|
| 69 |
height=1000,
|
|
|
|
| 70 |
)
|
| 71 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
| 72 |
with gr.Row():
|
| 73 |
inverse_folding_table = gr.components.DataFrame(
|
| 74 |
pd.read_csv('data/sequence_design.csv'),
|
| 75 |
height=1000,
|
|
|
|
| 76 |
)
|
| 77 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
| 78 |
with gr.Row():
|
| 79 |
inverse_folding_table = gr.components.DataFrame(
|
| 80 |
pd.read_csv('data/co_design.csv'),
|
| 81 |
height=1000,
|
|
|
|
| 82 |
)
|
| 83 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
| 84 |
with gr.Row():
|
| 85 |
inverse_folding_table = gr.components.DataFrame(
|
| 86 |
pd.read_csv('data/motif_scaffolding.csv'),
|
| 87 |
height=1000,
|
|
|
|
| 88 |
)
|
| 89 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
| 90 |
with gr.Row():
|
| 91 |
inverse_folding_table = gr.components.DataFrame(
|
| 92 |
pd.read_csv('data/antibody_design.csv'),
|
| 93 |
height=1000,
|
|
|
|
| 94 |
)
|
| 95 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
| 96 |
with gr.Row():
|
| 97 |
inverse_folding_table = gr.components.DataFrame(
|
| 98 |
pd.read_csv('data/protein_folding.csv'),
|
| 99 |
height=1000,
|
|
|
|
| 100 |
)
|
| 101 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
| 102 |
with gr.Row():
|
| 103 |
inverse_folding_table = gr.components.DataFrame(
|
| 104 |
pd.read_csv('data/multi_state_prediction.csv'),
|
| 105 |
height=10000,
|
| 106 |
-
interactive=False
|
| 107 |
)
|
| 108 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
| 109 |
with gr.Row():
|
| 110 |
inverse_folding_table = gr.components.DataFrame(
|
| 111 |
pd.read_csv('data/conformation_prediction.csv'),
|
| 112 |
height=1000,
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
|
|
|
|
| 61 |
inverse_folding_table = gr.components.DataFrame(
|
| 62 |
pd.read_csv('data/inverse_folding.csv'),
|
| 63 |
height=1000,
|
| 64 |
+
interactive=False,
|
| 65 |
)
|
| 66 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
| 67 |
with gr.Row():
|
| 68 |
inverse_folding_table = gr.components.DataFrame(
|
| 69 |
pd.read_csv('data/structure_design.csv'),
|
| 70 |
height=1000,
|
| 71 |
+
interactive=False,
|
| 72 |
)
|
| 73 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
| 74 |
with gr.Row():
|
| 75 |
inverse_folding_table = gr.components.DataFrame(
|
| 76 |
pd.read_csv('data/sequence_design.csv'),
|
| 77 |
height=1000,
|
| 78 |
+
interactive=False,
|
| 79 |
)
|
| 80 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
| 81 |
with gr.Row():
|
| 82 |
inverse_folding_table = gr.components.DataFrame(
|
| 83 |
pd.read_csv('data/co_design.csv'),
|
| 84 |
height=1000,
|
| 85 |
+
interactive=False,
|
| 86 |
)
|
| 87 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
| 88 |
with gr.Row():
|
| 89 |
inverse_folding_table = gr.components.DataFrame(
|
| 90 |
pd.read_csv('data/motif_scaffolding.csv'),
|
| 91 |
height=1000,
|
| 92 |
+
interactive=False,
|
| 93 |
)
|
| 94 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
| 95 |
with gr.Row():
|
| 96 |
inverse_folding_table = gr.components.DataFrame(
|
| 97 |
pd.read_csv('data/antibody_design.csv'),
|
| 98 |
height=1000,
|
| 99 |
+
interactive=False,
|
| 100 |
)
|
| 101 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
| 102 |
with gr.Row():
|
| 103 |
inverse_folding_table = gr.components.DataFrame(
|
| 104 |
pd.read_csv('data/protein_folding.csv'),
|
| 105 |
height=1000,
|
| 106 |
+
interactive=False,
|
| 107 |
)
|
| 108 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
| 109 |
with gr.Row():
|
| 110 |
inverse_folding_table = gr.components.DataFrame(
|
| 111 |
pd.read_csv('data/multi_state_prediction.csv'),
|
| 112 |
height=10000,
|
| 113 |
+
interactive=False,
|
| 114 |
)
|
| 115 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
| 116 |
with gr.Row():
|
| 117 |
inverse_folding_table = gr.components.DataFrame(
|
| 118 |
pd.read_csv('data/conformation_prediction.csv'),
|
| 119 |
height=1000,
|
| 120 |
+
interactive=False,
|
| 121 |
)
|
| 122 |
|
| 123 |
|