Spaces:
Runtime error
Runtime error
import gradio as gr | |
import difflib,time,numpy | |
# Dictionary | |
dictionaryFile=open('words.txt','r') # Open words file | |
dictionary=dictionaryFile.readlines() # Read words file into list | |
dictionaryFile.close() | |
def check3(inp, inp2): | |
if len(inp) > len(inp2): | |
longest = inp | |
shortest = inp2 | |
else: | |
shortest = inp | |
longest = inp2 | |
ls = len(shortest) | |
ll = len(longest) | |
out = 0 | |
for i in range(ls): | |
if shortest[i] in longest: | |
out += 1 | |
if shortest[i] == longest[i]: | |
out += 2 | |
return out - ((out-ls)*0.5) - (ll-ls) * 0.5 | |
class Neuron: | |
def __init__(self, inp, output: str): | |
self.output = output | |
self.inp = inp | |
def train(self, inpr): | |
cid = random.randint(0, len(inpr)-1) | |
c2id = random.randint(0, len(inpr[cid])-1) | |
if inpr[cid][c2id] not in self.inp: | |
self.inp.append(inpr[cid][c2id]) | |
cid = random.randint(0, len(self.inp)-1) | |
if not check(self.inp[cid], inpr): | |
del self.inp[cid] | |
def check(word, list2d): | |
for i in list2d: | |
if word in i: return True | |
# Work | |
def get_matches(text): | |
# prepare text | |
textR=str(text) | |
textR=textR.split() # Split inputed text to list | |
# Variables | |
queue=len(textR) | |
output=[] | |
# try to correct it | |
try: | |
##return(difflib.get_close_matches(text, dictionary)) #[0].replace("\n", "") | |
for x in range(queue): | |
output.append(difflib.get_close_matches(textR[x], dictionary)) | |
return(output) | |
except Exception as ex: # Print error if error | |
return(ex) | |
iface = gr.Interface(fn=get_matches, inputs="text", outputs="text") | |
iface.launch() | |