import gradio as gr from prodiapy import Prodia from PIL import Image from io import BytesIO import requests import random import os import base64 client = Prodia() def infer(source, target): if source_image is None or target_image is None: return source_url = upload_image(source) target_url = upload_image(target) job = client.faceswap(source_url=source_url, target_url=target_url) res = client.wait(job, raise_on_fail=False) if res.failed: return return res.image_url def upload_image(file): files = {'file': open(file, 'rb')} img_id = requests.post(os.getenv("IMAGE_API_1"), files=files).json()['id'] payload = { "content": "", "nonce": f"{random.randint(1, 10000000)}H9X42KSEJFNNH", "replies": [], "attachments": [img_id] } res = requests.post(os.getenv("IMAGE_API_2"), json=payload, headers={"x-session-token": os.getenv("SESSION_TOKEN")}) return f"{os.getenv('IMAGE_API_1')}/{img_id}/{res.json()['attachments'][0]['filename']}" def image_to_base64(image: Image): # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string with gr.Blocks() as demo: with gr.Column(): gr.HTML("

Face Swap

") with gr.Row(): with gr.Row(): source_image = gr.Image(type="filepath", label="Source Image") target_image = gr.Image(type="filepath", label="Target Image") with gr.Column(): result = gr.Image() run_button = gr.Button("Swap Faces", variant="primary") gr.Examples( examples=[ [ "/examples/example1.jpg", "/examples/example2.jpg" ] ], fn=infer, inputs=[source_image, target_image], outputs=[result] ) run_button.click(fn=infer, inputs=[source_image, target_image], outputs=[result]) demo.queue(max_size=20, api_open=False).launch(show_api=False, max_threads=400)