Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,8 +19,6 @@ from transformers import (
|
|
19 |
Qwen2VLForConditionalGeneration,
|
20 |
AutoProcessor,
|
21 |
AutoTokenizer,
|
22 |
-
AutoModel,
|
23 |
-
AutoImageProcessor,
|
24 |
TextIteratorStreamer,
|
25 |
)
|
26 |
|
@@ -33,18 +31,14 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
33 |
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
-
# Load
|
37 |
-
MODEL_ID_M = "
|
38 |
-
processor_m =
|
39 |
-
|
40 |
-
tokenizer_m.pad_token = tokenizer_m.eos_token # Set pad_token to resolve ValueError
|
41 |
-
model_m = AutoModel.from_pretrained(
|
42 |
MODEL_ID_M,
|
43 |
trust_remote_code=True,
|
44 |
torch_dtype=torch.float16
|
45 |
).to(device).eval()
|
46 |
-
# Fix AssertionError by setting img_context_token_id
|
47 |
-
model_m.img_context_token_id = tokenizer_m.convert_tokens_to_ids("<image>")
|
48 |
|
49 |
# Load Space Thinker
|
50 |
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
|
@@ -64,7 +58,21 @@ model_k = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
64 |
torch_dtype=torch.float16
|
65 |
).to(device).eval()
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def downsample_video(video_path):
|
|
|
|
|
|
|
|
|
68 |
vidcap = cv2.VideoCapture(video_path)
|
69 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
70 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
@@ -83,214 +91,129 @@ def downsample_video(video_path):
|
|
83 |
|
84 |
@spaces.GPU
|
85 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
processor = processor_m
|
93 |
-
tokenizer = tokenizer_m
|
94 |
model = model_m
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
# Tokenize the message
|
105 |
-
inputs = tokenizer(message, return_tensors="pt").to(device)
|
106 |
-
|
107 |
-
# Process image
|
108 |
-
image_features = processor(image, return_tensors="pt").to(device)
|
109 |
-
|
110 |
-
# Combine inputs
|
111 |
-
generation_inputs = {
|
112 |
-
"input_ids": inputs["input_ids"],
|
113 |
-
"attention_mask": inputs["attention_mask"],
|
114 |
-
**image_features,
|
115 |
-
}
|
116 |
-
|
117 |
-
# Create streamer
|
118 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
119 |
-
|
120 |
-
# Generation kwargs
|
121 |
-
generation_kwargs = {
|
122 |
-
**generation_inputs,
|
123 |
-
"streamer": streamer,
|
124 |
-
"max_new_tokens": max_new_tokens,
|
125 |
-
"do_sample": True,
|
126 |
-
"temperature": temperature,
|
127 |
-
"top_p": top_p,
|
128 |
-
"top_k": top_k,
|
129 |
-
"repetition_penalty": repetition_penalty,
|
130 |
-
}
|
131 |
-
|
132 |
-
# Start generation in a thread
|
133 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
134 |
-
thread.start()
|
135 |
-
|
136 |
-
buffer = ""
|
137 |
-
for new_text in streamer:
|
138 |
-
buffer += new_text
|
139 |
-
buffer = buffer.replace("<|im_end|>", "")
|
140 |
-
time.sleep(0.01)
|
141 |
-
yield buffer
|
142 |
-
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
|
143 |
-
if model_name == "SpaceThinker-3B":
|
144 |
-
processor = processor_z
|
145 |
-
model = model_z
|
146 |
-
else:
|
147 |
-
processor = processor_k
|
148 |
-
model = model_k
|
149 |
-
|
150 |
-
if image is None:
|
151 |
-
yield "Please upload an image."
|
152 |
-
return
|
153 |
-
|
154 |
-
messages = [{
|
155 |
-
"role": "user",
|
156 |
-
"content": [
|
157 |
-
{"type": "image", "image": image},
|
158 |
-
{"type": "text", "text": text},
|
159 |
-
]
|
160 |
-
}]
|
161 |
-
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
162 |
-
inputs = processor(
|
163 |
-
text=[prompt_full],
|
164 |
-
images=[image],
|
165 |
-
return_tensors="pt",
|
166 |
-
padding=True,
|
167 |
-
truncation=False,
|
168 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
169 |
-
).to(device)
|
170 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
171 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
172 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
173 |
-
thread.start()
|
174 |
-
buffer = ""
|
175 |
-
for new_text in streamer:
|
176 |
-
buffer += new_text
|
177 |
-
buffer = buffer.replace("<|im_end|>", "")
|
178 |
-
time.sleep(0.01)
|
179 |
-
yield buffer
|
180 |
else:
|
181 |
yield "Invalid model selected."
|
182 |
return
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
@spaces.GPU
|
185 |
def generate_video(model_name: str, text: str, video_path: str,
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
192 |
processor = processor_m
|
193 |
-
tokenizer = tokenizer_m
|
194 |
model = model_m
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
inputs = tokenizer(message, return_tensors="pt").to(device)
|
205 |
-
|
206 |
-
# Process all frames
|
207 |
-
image_features = processor([frame[0] for frame in frames], return_tensors="pt").to(device)
|
208 |
-
|
209 |
-
# Combine inputs
|
210 |
-
generation_inputs = {
|
211 |
-
"input_ids": inputs["input_ids"],
|
212 |
-
"attention_mask": inputs["attention_mask"],
|
213 |
-
**image_features,
|
214 |
-
}
|
215 |
-
|
216 |
-
# Create streamer
|
217 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
218 |
-
|
219 |
-
# Generation kwargs
|
220 |
-
generation_kwargs = {
|
221 |
-
**generation_inputs,
|
222 |
-
"streamer": streamer,
|
223 |
-
"max_new_tokens": max_new_tokens,
|
224 |
-
"do_sample": True,
|
225 |
-
"temperature": temperature,
|
226 |
-
"top_p": top_p,
|
227 |
-
"top_k": top_k,
|
228 |
-
"repetition_penalty": repetition_penalty,
|
229 |
-
}
|
230 |
-
|
231 |
-
# Start generation in a thread
|
232 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
233 |
-
thread.start()
|
234 |
-
|
235 |
-
buffer = ""
|
236 |
-
for new_text in streamer:
|
237 |
-
buffer += new_text
|
238 |
-
buffer = buffer.replace("<|im_end|>", "")
|
239 |
-
time.sleep(0.01)
|
240 |
-
yield buffer
|
241 |
-
elif model_name in ["SpaceThinker-3B", "coreOCR-7B-050325-preview"]:
|
242 |
-
if model_name == "SpaceThinker-3B":
|
243 |
-
processor = processor_z
|
244 |
-
model = model_z
|
245 |
-
else:
|
246 |
-
processor = processor_k
|
247 |
-
model = model_k
|
248 |
-
|
249 |
-
if video_path is None:
|
250 |
-
yield "Please upload a video."
|
251 |
-
return
|
252 |
-
|
253 |
-
frames = downsample_video(video_path)
|
254 |
-
messages = [
|
255 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
256 |
-
{"role": "user", "content": [{"type": "text", "text": text}]}
|
257 |
-
]
|
258 |
-
for frame in frames:
|
259 |
-
image, timestamp = frame
|
260 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
261 |
-
messages[1]["content"].append({"type": "image", "image": image})
|
262 |
-
inputs = processor.apply_chat_template(
|
263 |
-
messages,
|
264 |
-
tokenize=True,
|
265 |
-
add_generation_prompt=True,
|
266 |
-
return_dict=True,
|
267 |
-
return_tensors="pt",
|
268 |
-
truncation=False,
|
269 |
-
max_length=MAX_INPUT_TOKEN_LENGTH
|
270 |
-
).to(device)
|
271 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
272 |
-
generation_kwargs = {
|
273 |
-
**inputs,
|
274 |
-
"streamer": streamer,
|
275 |
-
"max_new_tokens": max_new_tokens,
|
276 |
-
"do_sample": True,
|
277 |
-
"temperature": temperature,
|
278 |
-
"top_p": top_p,
|
279 |
-
"top_k": top_k,
|
280 |
-
"repetition_penalty": repetition_penalty,
|
281 |
-
}
|
282 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
283 |
-
thread.start()
|
284 |
-
buffer = ""
|
285 |
-
for new_text in streamer:
|
286 |
-
buffer += new_text
|
287 |
-
buffer = buffer.replace("<|im_end|>", "")
|
288 |
-
time.sleep(0.01)
|
289 |
-
yield buffer
|
290 |
else:
|
291 |
yield "Invalid model selected."
|
292 |
return
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
# Define examples for image and video inference
|
295 |
image_examples = [
|
296 |
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
|
@@ -346,13 +269,13 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
346 |
with gr.Column():
|
347 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
348 |
model_choice = gr.Radio(
|
349 |
-
choices=["
|
350 |
label="Select Model",
|
351 |
-
value="
|
352 |
)
|
353 |
|
354 |
gr.Markdown("**Model Info**")
|
355 |
-
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1):
|
356 |
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
357 |
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
358 |
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
|
|
|
19 |
Qwen2VLForConditionalGeneration,
|
20 |
AutoProcessor,
|
21 |
AutoTokenizer,
|
|
|
|
|
22 |
TextIteratorStreamer,
|
23 |
)
|
24 |
|
|
|
31 |
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
+
# Load SkyCaptioner-V1
|
35 |
+
MODEL_ID_M = "Skywork/SkyCaptioner-V1"
|
36 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
37 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
|
38 |
MODEL_ID_M,
|
39 |
trust_remote_code=True,
|
40 |
torch_dtype=torch.float16
|
41 |
).to(device).eval()
|
|
|
|
|
42 |
|
43 |
# Load Space Thinker
|
44 |
MODEL_ID_Z = "remyxai/SpaceThinker-Qwen2.5VL-3B"
|
|
|
58 |
torch_dtype=torch.float16
|
59 |
).to(device).eval()
|
60 |
|
61 |
+
# Load Imgscope-OCR-2B-0527
|
62 |
+
MODEL_ID_Y = "prithivMLmods/Imgscope-OCR-2B-0527"
|
63 |
+
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
64 |
+
model_y = Qwen2VLForConditionalGeneration.from_pretrained(
|
65 |
+
MODEL_ID_Y,
|
66 |
+
trust_remote_code=True,
|
67 |
+
torch_dtype=torch.float16
|
68 |
+
).to(device).eval()
|
69 |
+
|
70 |
+
|
71 |
def downsample_video(video_path):
|
72 |
+
"""
|
73 |
+
Downsamples the video to evenly spaced frames.
|
74 |
+
Each frame is returned as a PIL image along with its timestamp.
|
75 |
+
"""
|
76 |
vidcap = cv2.VideoCapture(video_path)
|
77 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
78 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
91 |
|
92 |
@spaces.GPU
|
93 |
def generate_image(model_name: str, text: str, image: Image.Image,
|
94 |
+
max_new_tokens: int = 1024,
|
95 |
+
temperature: float = 0.6,
|
96 |
+
top_p: float = 0.9,
|
97 |
+
top_k: int = 50,
|
98 |
+
repetition_penalty: float = 1.2):
|
99 |
+
"""
|
100 |
+
Generates responses using the selected model for image input.
|
101 |
+
"""
|
102 |
+
if model_name == "SkyCaptioner-V1":
|
103 |
processor = processor_m
|
|
|
104 |
model = model_m
|
105 |
+
elif model_name == "SpaceThinker-3B":
|
106 |
+
processor = processor_z
|
107 |
+
model = model_z
|
108 |
+
elif model_name == "coreOCR-7B-050325-preview":
|
109 |
+
processor = processor_k
|
110 |
+
model = model_k
|
111 |
+
elif model_name == "Imgscope-OCR-2B-0527":
|
112 |
+
processor = processor_y
|
113 |
+
model = model_y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
else:
|
115 |
yield "Invalid model selected."
|
116 |
return
|
117 |
|
118 |
+
if image is None:
|
119 |
+
yield "Please upload an image."
|
120 |
+
return
|
121 |
+
|
122 |
+
messages = [{
|
123 |
+
"role": "user",
|
124 |
+
"content": [
|
125 |
+
{"type": "image", "image": image},
|
126 |
+
{"type": "text", "text": text},
|
127 |
+
]
|
128 |
+
}]
|
129 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
130 |
+
inputs = processor(
|
131 |
+
text=[prompt_full],
|
132 |
+
images=[image],
|
133 |
+
return_tensors="pt",
|
134 |
+
padding=True,
|
135 |
+
truncation=False,
|
136 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
137 |
+
).to(device)
|
138 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
139 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
140 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
141 |
+
thread.start()
|
142 |
+
buffer = ""
|
143 |
+
for new_text in streamer:
|
144 |
+
buffer += new_text
|
145 |
+
buffer = buffer.replace("<|im_end|>", "")
|
146 |
+
time.sleep(0.01)
|
147 |
+
yield buffer
|
148 |
+
|
149 |
@spaces.GPU
|
150 |
def generate_video(model_name: str, text: str, video_path: str,
|
151 |
+
max_new_tokens: int = 1024,
|
152 |
+
temperature: float = 0.6,
|
153 |
+
top_p: float = 0.9,
|
154 |
+
top_k: int = 50,
|
155 |
+
repetition_penalty: float = 1.2):
|
156 |
+
"""
|
157 |
+
Generates responses using the selected model for video input.
|
158 |
+
"""
|
159 |
+
if model_name == "SkyCaptioner-V1":
|
160 |
processor = processor_m
|
|
|
161 |
model = model_m
|
162 |
+
elif model_name == "SpaceThinker-3B":
|
163 |
+
processor = processor_z
|
164 |
+
model = model_z
|
165 |
+
elif model_name == "coreOCR-7B-050325-preview":
|
166 |
+
processor = processor_k
|
167 |
+
model = model_k
|
168 |
+
elif model_name == "Imgscope-OCR-2B-0527":
|
169 |
+
processor = processor_y
|
170 |
+
model = model_y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
else:
|
172 |
yield "Invalid model selected."
|
173 |
return
|
174 |
|
175 |
+
if video_path is None:
|
176 |
+
yield "Please upload a video."
|
177 |
+
return
|
178 |
+
|
179 |
+
frames = downsample_video(video_path)
|
180 |
+
messages = [
|
181 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
182 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
183 |
+
]
|
184 |
+
for frame in frames:
|
185 |
+
image, timestamp = frame
|
186 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
187 |
+
messages[1]["content"].append({"type": "image", "image": image})
|
188 |
+
inputs = processor.apply_chat_template(
|
189 |
+
messages,
|
190 |
+
tokenize=True,
|
191 |
+
add_generation_prompt=True,
|
192 |
+
return_dict=True,
|
193 |
+
return_tensors="pt",
|
194 |
+
truncation=False,
|
195 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
196 |
+
).to(device)
|
197 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
198 |
+
generation_kwargs = {
|
199 |
+
**inputs,
|
200 |
+
"streamer": streamer,
|
201 |
+
"max_new_tokens": max_new_tokens,
|
202 |
+
"do_sample": True,
|
203 |
+
"temperature": temperature,
|
204 |
+
"top_p": top_p,
|
205 |
+
"top_k": top_k,
|
206 |
+
"repetition_penalty": repetition_penalty,
|
207 |
+
}
|
208 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
209 |
+
thread.start()
|
210 |
+
buffer = ""
|
211 |
+
for new_text in streamer:
|
212 |
+
buffer += new_text
|
213 |
+
buffer = buffer.replace("<|im_end|>", "")
|
214 |
+
time.sleep(0.01)
|
215 |
+
yield buffer
|
216 |
+
|
217 |
# Define examples for image and video inference
|
218 |
image_examples = [
|
219 |
["type out the messy hand-writing as accurately as you can.", "images/1.jpg"],
|
|
|
269 |
with gr.Column():
|
270 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
271 |
model_choice = gr.Radio(
|
272 |
+
choices=["SkyCaptioner-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview", "Imgscope-OCR-2B-0527"],
|
273 |
label="Select Model",
|
274 |
+
value="SkyCaptioner-V1"
|
275 |
)
|
276 |
|
277 |
gr.Markdown("**Model Info**")
|
278 |
+
gr.Markdown("⤷ [SkyCaptioner-V1](https://huggingface.co/Skywork/SkyCaptioner-V1): structural video captioning model designed to generate high-quality, structural descriptions for video data. It integrates specialized sub-expert models.")
|
279 |
gr.Markdown("⤷ [SpaceThinker-Qwen2.5VL-3B](https://huggingface.co/remyxai/SpaceThinker-Qwen2.5VL-3B): thinking/reasoning multimodal/vision-language model (VLM) trained to enhance spatial reasoning.")
|
280 |
gr.Markdown("⤷ [coreOCR-7B-050325-preview](https://huggingface.co/prithivMLmods/coreOCR-7B-050325-preview): model is a fine-tuned version of qwen/qwen2-vl-7b, optimized for document-level optical character recognition (ocr), long-context vision-language understanding.")
|
281 |
gr.Markdown("⤷ [Imgscope-OCR-2B-0527](https://huggingface.co/prithivMLmods/Imgscope-OCR-2B-0527): fine-tuned version of qwen2-vl-2b-instruct, specifically optimized for messy handwriting recognition, document ocr, realistic handwritten ocr, and math problem solving with latex formatting.")
|