#!/usr/bin/env python #patch 0.01 import os import random import uuid import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler huggingface_token = os.getenv("HUGGINGFACE_TOKEN") examples = [ ["assets/1.png", "Change the picture to black and white."], ["assets/2.png", "Add the chocolate topping to the ice cream."], ["assets/3.png", "Make the burger look spicy."], ["assets/4.png", "Change the color of the jacket to white."], ] model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None) pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) DESCRIPTION = """ """ if not torch.cuda.is_available(): DESCRIPTION += "\n

⚠️Running on CPU, This may not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = False MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU def img2img_generate( prompt: str, init_image: gr.Image, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, guidance_scale: float = 7, randomize_seed: bool = False, num_inference_steps=30, strength: float = 0.8, NUM_IMAGES_PER_PROMPT=1, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore init_image = init_image.resize((768, 768)) output = pipe( prompt=prompt, image=init_image, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, strength=strength, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, output_type="pil", ).images return output css = ''' .gradio-container{max-width: 800px !important} h1{text-align:center} ''' with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(equal_height=True): with gr.Column(scale=1): img2img_prompt = gr.Text( label="Instruct", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) init_image = gr.Image(label="Image", type="pil") with gr.Row(): img2img_run_button = gr.Button("Generate", variant="primary") with gr.Column(scale=1): img2img_output = gr.Gallery(label="Result", elem_id="gallery") with gr.Accordion("Advanced options", open=False, visible=False): with gr.Row(): img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) img2img_negative_prompt = gr.Text( label="Negative prompt", max_lines=1, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) img2img_seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) img2img_steps = gr.Slider( label="Steps", minimum=0, maximum=60, step=1, value=25, ) img2img_number_image = gr.Slider( label="No.of.Images", minimum=1, maximum=4, step=1, value=1, ) img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): img2img_guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=10, step=0.1, value=5.0, ) strength = gr.Slider(label="Confidence", minimum=0.0, maximum=1.0, step=0.01, value=0.8) gr.Examples( examples=examples, inputs=[init_image, img2img_prompt], outputs=img2img_output, fn=img2img_generate, cache_examples=CACHE_EXAMPLES, ) img2img_use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=img2img_use_negative_prompt, outputs=img2img_negative_prompt, api_name=False, ) gr.on( triggers=[ img2img_prompt.submit, img2img_negative_prompt.submit, img2img_run_button.click, ], fn=img2img_generate, inputs=[ img2img_prompt, init_image, img2img_negative_prompt, img2img_use_negative_prompt, img2img_seed, img2img_guidance_scale, img2img_randomize_seed, img2img_steps, strength, img2img_number_image, ], outputs=[img2img_output], api_name="img-to-img", ) if __name__ == "__main__": demo.queue().launch(show_api=False, debug=False#!/usr/bin/env python #patch 0.01 import os import random import uuid import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler huggingface_token = os.getenv("HUGGINGFACE_TOKEN") examples = [ ["assets/1.png", "Change the picture to black and white."], ["assets/2.png", "Add the chocolate topping to the ice cream."], ["assets/3.png", "Make the burger look spicy."], ["assets/4.png", "Change the color of the jacket to white."], ] model_id = "timbrooks/instruct-pix2pix" pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None) pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) DESCRIPTION = """ """ if not torch.cuda.is_available(): DESCRIPTION += "\n

⚠️Running on CPU, This may not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = False MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU def img2img_generate( prompt: str, init_image: gr.Image, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, guidance_scale: float = 7, randomize_seed: bool = False, num_inference_steps=30, strength: float = 0.8, NUM_IMAGES_PER_PROMPT=1, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore init_image = init_image.resize((768, 768)) output = pipe( prompt=prompt, image=init_image, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, strength=strength, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, output_type="pil", ).images return output css = ''' .gradio-container{max-width: 800px !important} h1{text-align:center} ''' with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(equal_height=True): with gr.Column(scale=1): img2img_prompt = gr.Text( label="Instruct", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) init_image = gr.Image(label="Image", type="pil") with gr.Row(): img2img_run_button = gr.Button("Generate", variant="primary") with gr.Column(scale=1): img2img_output = gr.Gallery(label="Result", elem_id="gallery") with gr.Accordion("Advanced options", open=False, visible=False): with gr.Row(): img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) img2img_negative_prompt = gr.Text( label="Negative prompt", max_lines=1, value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) img2img_seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) img2img_steps = gr.Slider( label="Steps", minimum=0, maximum=60, step=1, value=25, ) img2img_number_image = gr.Slider( label="No.of.Images", minimum=1, maximum=4, step=1, value=1, ) img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): img2img_guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=10, step=0.1, value=5.0, ) strength = gr.Slider(label="Confidence", minimum=0.0, maximum=1.0, step=0.01, value=0.8) gr.Examples( examples=examples, inputs=[init_image, img2img_prompt], outputs=img2img_output, fn=img2img_generate, cache_examples=CACHE_EXAMPLES, ) img2img_use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=img2img_use_negative_prompt, outputs=img2img_negative_prompt, api_name=False, ) gr.on( triggers=[ img2img_prompt.submit, img2img_negative_prompt.submit, img2img_run_button.click, ], fn=img2img_generate, inputs=[ img2img_prompt, init_image, img2img_negative_prompt, img2img_use_negative_prompt, img2img_seed, img2img_guidance_scale, img2img_randomize_seed, img2img_steps, strength, img2img_number_image, ], outputs=[img2img_output], api_name="img-to-img", ) if __name__ == "__main__": demo.queue().launch(show_api=False, debug=False