import gradio as gr import logging import numpy as np import torch from transformers import VitsModel, VitsTokenizer, pipeline from transformers import M2M100ForConditionalGeneration from tokenization_small100 import SMALL100Tokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" target_language = "fr" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-small-cv11-french", device=device) translation_model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100") translation_tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang=target_language) # load text-to-speech checkpoint model = VitsModel.from_pretrained("facebook/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) eng_text = outputs["text"] encoded_eng_text = translation_tokenizer(eng_text, return_tensors="pt") generated_tokens = translation_model.generate(**encoded_eng_text) translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) logging.info(f"Translated Text: {translated_text}") return translated_text def synthesise(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(inputs["input_ids"]) speech = outputs["waveform"][0] logging.info(speech) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for ASR, the [SMaLL-100](https://huggingface.co/alirezamsh/small100) model for text to text translation and Facebook's [MMS TTS-FRA](https://huggingface.co/facebook/mms-tts-fra) for text-to-speech for french: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["upload"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) logging.getLogger().setLevel(logging.INFO) demo.launch()