Spaces:
Runtime error
Runtime error
Prabin Bhandari
commited on
Commit
·
31cd311
1
Parent(s):
1ea30cb
Use list of words
Browse files- cooccurrence_count.py +43 -44
cooccurrence_count.py
CHANGED
@@ -34,17 +34,14 @@ _KWARGS_DESCRIPTION = """
|
|
34 |
Calculates the co-occurence of two words in each sentence.
|
35 |
Args:
|
36 |
`data`: a list of `str` which containes a dataset.
|
37 |
-
`
|
38 |
-
`word2`: The second word.
|
39 |
Returns:
|
40 |
-
count: The count of total sentences.
|
41 |
-
co_occurrence_count: The co-occurrence count of word1 and word2 in data.
|
42 |
Examples:
|
43 |
>>> data = ["hello sun","hello moon", "hello sun"]
|
44 |
>>> c_count = evaluate.load("prb977/cooccurrence_count")
|
45 |
-
>>> results = c_count.compute(data=data,
|
46 |
>>> print(results)
|
47 |
-
|
48 |
"""
|
49 |
|
50 |
|
@@ -87,41 +84,43 @@ class CooccurrenceCount(evaluate.Measurement):
|
|
87 |
def _download_and_prepare(self, dl_manager):
|
88 |
stanza.download('en', processors='tokenize')
|
89 |
|
90 |
-
def _compute(self, data,
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
34 |
Calculates the co-occurence of two words in each sentence.
|
35 |
Args:
|
36 |
`data`: a list of `str` which containes a dataset.
|
37 |
+
`words`: list of list of two words that we want to check for
|
|
|
38 |
Returns:
|
|
|
|
|
39 |
Examples:
|
40 |
>>> data = ["hello sun","hello moon", "hello sun"]
|
41 |
>>> c_count = evaluate.load("prb977/cooccurrence_count")
|
42 |
+
>>> results = c_count.compute(data=data, words=[['hello','sun']\)
|
43 |
>>> print(results)
|
44 |
+
[['hello','sun',3,2]]
|
45 |
"""
|
46 |
|
47 |
|
|
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
stanza.download('en', processors='tokenize')
|
86 |
|
87 |
+
def _compute(self, data, words):
|
88 |
+
for each in words:
|
89 |
+
word1 = each[0]
|
90 |
+
word2 = each[1]
|
91 |
+
len1 = len(stanza_tokenizer(word1))
|
92 |
+
len2 = len(stanza_tokenizer(word2))
|
93 |
+
if len1 > len2:
|
94 |
+
ugram = len1
|
95 |
+
lgram = len2
|
96 |
+
elif len1 < len2:
|
97 |
+
ugram = len2
|
98 |
+
lgram = len1
|
99 |
+
else:
|
100 |
+
ugram = len1
|
101 |
+
lgram = len1
|
102 |
+
|
103 |
+
v = CountVectorizer(
|
104 |
+
ngram_range=(lgram, ugram),
|
105 |
+
tokenizer=stanza_tokenizer,
|
106 |
+
lowercase=True
|
107 |
+
)
|
108 |
+
analyzer = v.build_analyzer()
|
109 |
+
vectorizer = CountVectorizer(
|
110 |
+
ngram_range=(lgram, ugram),
|
111 |
+
vocabulary={
|
112 |
+
analyzer(word1)[-1]: 0,
|
113 |
+
analyzer(word2)[-1]: 1
|
114 |
+
},
|
115 |
+
tokenizer=stanza_tokenizer,
|
116 |
+
lowercase=True
|
117 |
+
)
|
118 |
+
co_occurrences = vectorizer.fit_transform(data)
|
119 |
+
dense_mat = co_occurrences.todense()
|
120 |
+
count = len(data)
|
121 |
+
co_occurrence_count = np.sum(
|
122 |
+
np.apply_along_axis(check_count, axis=1, arr=dense_mat)
|
123 |
+
)
|
124 |
+
each.append(count)
|
125 |
+
each.append(co_occurrence_count)
|
126 |
+
return words
|