from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer import requests from PIL import Image import io import gradio as gr # Load the MarianMT model and tokenizer for translation (Tamil to English) model_name = "Helsinki-NLP/opus-mt-mul-en" translation_model = MarianMTModel.from_pretrained(model_name) translation_tokenizer = MarianTokenizer.from_pretrained(model_name) # Load GPT-Neo for creative text generation text_generation_model_name = "EleutherAI/gpt-neo-1.3B" text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) # Add padding token to GPT-Neo tokenizer if not present if text_generation_tokenizer.pad_token is None: text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Hugging Face API for FLUX.1 image generation API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" headers = {"Authorization": "HUGGINGFACE_API_KEY"} # Replace with your API key # Query Hugging Face API to generate image def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.content # Translate Tamil text to English def translate_text(tamil_text): inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True) translated_tokens = translation_model.generate(**inputs) translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True) return translation # Generate an image based on the translated text def generate_image(prompt): image_bytes = query({"inputs": prompt}) image = Image.open(io.BytesIO(image_bytes)) return image # Generate creative text based on the translated English text def generate_creative_text(translated_text): inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True) generated_tokens = text_generation_model.generate(**inputs, max_length=100) creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True) return creative_text # Function to handle the full workflow def translate_generate_image_and_text(tamil_text): # Step 1: Translate Tamil to English translated_text = translate_text(tamil_text) # Step 2: Generate an image from the translated text image = generate_image(translated_text) # Step 3: Generate creative text from the translated text creative_text = generate_creative_text(translated_text) return translated_text, creative_text, image # Create Gradio interface interface = gr.Interface( fn=translate_generate_image_and_text, inputs=gr.Textbox(label="Enter Tamil Text"), # Input for Tamil text outputs=[ gr.Textbox(label="Translated Text"), # Output for translated text gr.Textbox(label="Creative Generated Text"),# Output for creative text gr.Image(label="Generated Image") # Output for generated image ], title="Tamil to English Translation, Image Generation & Creative Text", description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation." ) # Launch Gradio app interface.launch()