import gradio as gr import os from datetime import date import json import csv import datetime import smtplib from email.mime.text import MIMEText import requests from transformers import AutoTokenizer, AutoModelWithLMHead import gc cwd = os.getcwd() model_path = os.path.join(cwd) tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion") model_base = AutoModelWithLMHead.from_pretrained(model_path) def get_emotion(text): # input_ids = tokenizer.encode(text + '', return_tensors='pt') input_ids = tokenizer.encode(text, return_tensors='pt') output = model_base.generate(input_ids=input_ids, max_length=2) dec = [tokenizer.decode(ids) for ids in output] label = dec[0] gc.collect() return label def generate_emotion(article): sen_list = article sen_list = sen_list.split('\r\n') sen_list_temp = sen_list[0:] results_dict = [] results = [] for sen in sen_list_temp: if(sen.strip()): log_sen_list.append(sen) cur_result = get_emotion(sen) results.append(cur_result) results_dict.append( { 'sentence': sen, 'emotion': cur_result } ) result = { 'result': results_dict, } gc.collect() print("LENGTH of results ====> ", results) return result inputs=gr.Textbox(lines=10, label="Sentences",elem_id="inp_div") outputs=gr.Textbox(lines=10, label="Here is the Result",elem_id="inp_div") demo = gr.Interface( generate_emotion, inputs, outputs, title="Emotion Detection", description="Feel free to give your feedback", css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;" ) demo.launch()