Spaces:
Running
Running
pragnakalp
commited on
Commit
·
cb5876d
1
Parent(s):
57e4f69
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelWithLMHead
|
3 |
import gc
|
4 |
import os
|
5 |
import csv
|
6 |
-
import
|
7 |
import huggingface_hub
|
|
|
|
|
|
|
|
|
8 |
from huggingface_hub import Repository
|
|
|
|
|
9 |
|
|
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
DATASET_NAME = "emotion_detection"
|
12 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
|
@@ -14,13 +19,6 @@ DATA_FILENAME = "emotion_detection_logs.csv"
|
|
14 |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
|
15 |
DATASET_REPO_ID = "pragnakalp/emotion_detection"
|
16 |
print("is none?", HF_TOKEN is None)
|
17 |
-
|
18 |
-
sentences_value = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
|
19 |
-
cwd = os.getcwd()
|
20 |
-
model_path = os.path.join(cwd)
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
22 |
-
model_base = AutoModelWithLMHead.from_pretrained(model_path)
|
23 |
-
|
24 |
try:
|
25 |
hf_hub_download(
|
26 |
repo_id=DATASET_REPO_ID,
|
@@ -36,6 +34,45 @@ repo = Repository(
|
|
36 |
local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
37 |
)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def get_emotion(text):
|
40 |
|
41 |
# input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
|
@@ -67,55 +104,42 @@ def generate_emotion(article):
|
|
67 |
'emotion': cur_result
|
68 |
}
|
69 |
)
|
70 |
-
|
71 |
-
# result = {
|
72 |
-
# 'result': results_dict,
|
73 |
-
# }
|
74 |
result = {'Input':sen_list_temp, 'Detected Emotion':results}
|
75 |
gc.collect()
|
76 |
-
|
77 |
-
with open(DATA_FILE, "a") as f:
|
78 |
-
writer = csv.writer(f)
|
79 |
-
# write the data
|
80 |
-
writer.writerow(add_csv)
|
81 |
-
commit_url = repo.push_to_hub()
|
82 |
-
print("commit data :",commit_url)
|
83 |
-
|
84 |
return pd.DataFrame(result)
|
|
|
85 |
"""
|
86 |
Save generated details
|
87 |
"""
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# hostname = get_device_ip_address()
|
92 |
-
# url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
|
93 |
-
# # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
|
94 |
-
# myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
|
95 |
-
# x = requests.post(url, json = myobj)
|
96 |
-
# add_csv = [article, generated_questions, num_que]
|
97 |
-
# with open(DATA_FILE, "a") as f:
|
98 |
-
# writer = csv.writer(f)
|
99 |
-
# # write the data
|
100 |
-
# writer.writerow(add_csv)
|
101 |
-
# commit_url = repo.push_to_hub()
|
102 |
-
# print("commit data :",commit_url)
|
103 |
-
# # except Exception as e:
|
104 |
-
# # return "Error while storing data -->" + e
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
# except Exception as e:
|
114 |
-
# return "Error while sending mail" + e
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
|
120 |
|
121 |
demo = gr.Interface(
|
|
|
|
|
|
|
1 |
import gc
|
2 |
import os
|
3 |
import csv
|
4 |
+
import socket
|
5 |
import huggingface_hub
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
from huggingface_hub import Repository
|
11 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
12 |
+
|
13 |
|
14 |
+
## connection with HF datasets
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
DATASET_NAME = "emotion_detection"
|
17 |
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
|
|
|
19 |
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
|
20 |
DATASET_REPO_ID = "pragnakalp/emotion_detection"
|
21 |
print("is none?", HF_TOKEN is None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
try:
|
23 |
hf_hub_download(
|
24 |
repo_id=DATASET_REPO_ID,
|
|
|
34 |
local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
35 |
)
|
36 |
|
37 |
+
SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
|
38 |
+
## load model
|
39 |
+
cwd = os.getcwd()
|
40 |
+
model_path = os.path.join(cwd)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
42 |
+
model_base = AutoModelWithLMHead.from_pretrained(model_path)
|
43 |
+
|
44 |
+
"""
|
45 |
+
get ip address
|
46 |
+
"""
|
47 |
+
def get_device_ip_address():
|
48 |
+
result = {}
|
49 |
+
if os.name == "nt":
|
50 |
+
result = "Running on Windows"
|
51 |
+
hostname = socket.gethostname()
|
52 |
+
ip_address = socket.gethostbyname(hostname)
|
53 |
+
result['ip_addr'] = ip_address
|
54 |
+
result['host'] = hostname
|
55 |
+
print(result)
|
56 |
+
return result
|
57 |
+
elif os.name == "posix":
|
58 |
+
gw = os.popen("ip -4 route show default").read().split()
|
59 |
+
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
60 |
+
s.connect((gw[2], 0))
|
61 |
+
ipaddr = s.getsockname()[0]
|
62 |
+
gateway = gw[2]
|
63 |
+
host = socket.gethostname()
|
64 |
+
result['ip_addr'] = ipaddr
|
65 |
+
result['host'] = host
|
66 |
+
print(result)
|
67 |
+
return result
|
68 |
+
else:
|
69 |
+
result['id'] = os.name + " not supported yet."
|
70 |
+
print(result)
|
71 |
+
return result
|
72 |
+
|
73 |
+
"""
|
74 |
+
generate emotions of the sentences
|
75 |
+
"""
|
76 |
def get_emotion(text):
|
77 |
|
78 |
# input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
|
|
|
104 |
'emotion': cur_result
|
105 |
}
|
106 |
)
|
107 |
+
|
|
|
|
|
|
|
108 |
result = {'Input':sen_list_temp, 'Detected Emotion':results}
|
109 |
gc.collect()
|
110 |
+
save_data_and_sendmail(results_dict,sen_list, results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
return pd.DataFrame(result)
|
112 |
+
|
113 |
"""
|
114 |
Save generated details
|
115 |
"""
|
116 |
+
def save_data_and_sendmail(results_dict,sen_list,results):
|
117 |
+
try:
|
118 |
+
hostname = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
add_csv = [results_dict]
|
121 |
+
with open(DATA_FILE, "a") as f:
|
122 |
+
writer = csv.writer(f)
|
123 |
+
# write the data
|
124 |
+
writer.writerow(add_csv)
|
125 |
+
commit_url = repo.push_to_hub()
|
126 |
+
print("commit data :",commit_url)
|
|
|
|
|
127 |
|
128 |
+
hostname = get_device_ip_address()
|
129 |
+
url = 'https://pragnakalpdev35.pythonanywhere.com/hf_space_emotion_detection'
|
130 |
+
# url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
|
131 |
+
myobj = {'sen_list': sen_list,'gen_results': results,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
|
132 |
+
x = requests.post(url, json = myobj)
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
return "Error while sending mail" + e
|
136 |
+
|
137 |
+
return "Successfully save data"
|
138 |
+
|
139 |
+
"""
|
140 |
+
UI design for demo using gradio app
|
141 |
+
"""
|
142 |
+
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=10, label="Sentences",elem_id="inp_div")
|
143 |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
|
144 |
|
145 |
demo = gr.Interface(
|