import gradio as gr import time import os from pathlib import Path import subprocess from concrete.ml.deployment import FHEModelClient from requests import head import numpy import os from pathlib import Path import requests import json import base64 import subprocess import shutil import time import pandas as pd import pickle import numpy as np # This repository's directory REPO_DIR = Path(__file__).parent subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR) # if not exists, create a directory for the FHE keys called .fhe_keys if not os.path.exists(".fhe_keys"): os.mkdir(".fhe_keys") # if not exists, create a directory for the tmp files called tmp if not os.path.exists("tmp"): os.mkdir("tmp") # Wait 4 sec for the server to start time.sleep(4) # Encrypted data limit for the browser to display # (encrypted data is too large to display in the browser) ENCRYPTED_DATA_BROWSER_LIMIT = 500 N_USER_KEY_STORED = 20 def clean_tmp_directory(): # Allow 20 user keys to be stored. # Once that limitation is reached, deleted the oldest. path_sub_directories = sorted( [f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime ) user_ids = [] if len(path_sub_directories) > N_USER_KEY_STORED: n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED for p in path_sub_directories[:n_files_to_delete]: user_ids.append(p.name) shutil.rmtree(p) list_files_tmp = Path("tmp/").iterdir() # Delete all files related to user_id for file in list_files_tmp: for user_id in user_ids: if file.name.endswith(f"{user_id}.npy"): file.unlink() def keygen(): # Clean tmp directory if needed clean_tmp_directory() print("Initializing FHEModelClient...") # Let's create a user_id user_id = numpy.random.randint(0, 2**32) fhe_api = FHEModelClient(f"deployment/deployment_{task}", f".fhe_keys/{user_id}") fhe_api.load() # Generate a fresh key fhe_api.generate_private_and_evaluation_keys(force=True) evaluation_key = fhe_api.get_serialized_evaluation_keys() numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key) return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], user_id] def encode_quantize_encrypt(test_file, user_id): fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}") fhe_api.load() from PE_main import extract_infos features = pickle.loads(open(os.path.join("features.pkl"), "rb").read()) encodings = extract_infos(test_file) encodings = list(map(lambda x: encodings[x], features)) quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8) encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings) # Save encrypted_quantized_encoding in a file, since too large to pass through regular Gradio # buttons, https://github.com/gradio-app/gradio/issues/1877 numpy.save( f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy", encrypted_quantized_encoding, ) # Compute size encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[ :ENCRYPTED_DATA_BROWSER_LIMIT ] encrypted_quantized_encoding_shorten_hex = "".join( f"{i:02x}" for i in encrypted_quantized_encoding_shorten ) return ( encodings[0], quantized_encodings[0], encrypted_quantized_encoding_shorten_hex, ) def run_fhe(user_id): encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy") encrypted_quantized_encoding = numpy.load(encoded_data_path) # Read evaluation_key from the file evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy") # Use base64 to encode the encodings and evaluation key encrypted_quantized_encoding = base64.b64encode( encrypted_quantized_encoding ).decode() encoded_evaluation_key = base64.b64encode(evaluation_key).decode() query = {} query["evaluation_key"] = encoded_evaluation_key query["encrypted_encoding"] = encrypted_quantized_encoding headers = {"Content-type": "application/json"} response = requests.post( "http://localhost:8000/predict", data=json.dumps(query), headers=headers, ) encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"]) numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction) encrypted_prediction_shorten = list(encrypted_prediction)[ :ENCRYPTED_DATA_BROWSER_LIMIT ] encrypted_prediction_shorten_hex = "".join( f"{i:02x}" for i in encrypted_prediction_shorten ) def decrypt_prediction(user_id): encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy") # Read encrypted_prediction from the file encrypted_prediction = numpy.load(encoded_data_path).tobytes() fhe_api = FHEModelClient(f"fhe_model", f".fhe_keys/{user_id}") fhe_api.load() # We need to retrieve the private key that matches the client specs (see issue #18) fhe_api.generate_private_and_evaluation_keys(force=False) predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction) def update(name): return f"Welcome to Gradio, {name}!" if __name__ == "__main__": app = gr.Interface( [ keygen, encode_quantize_encrypt, run_fhe, decrypt_prediction, ], [ gr.inputs.Textbox(label="Task", default="malware"), gr.inputs.File(label="Test File"), gr.inputs.Textbox(label="User ID"), ], [ gr.outputs.Textbox(label="Evaluation Key"), gr.outputs.Textbox(label="Encodings"), gr.outputs.Textbox(label="Encrypted Quantized Encoding"), gr.outputs.Textbox(label="Encrypted Prediction"), ], title="FHE Model", description="This is a FHE Model", ) app.launch()