# @title web interface demo # import random # import gradio as gr # import time # import numpy as np # import pandas as pd # import torch # import faiss # from sklearn.preprocessing import normalize # from transformers import AutoTokenizer, AutoModelForQuestionAnswering # from sentence_transformers import SentenceTransformer, util # from pythainlp import Tokenizer # import pickle # import re # from pythainlp.tokenize import sent_tokenize # DEFAULT_MODEL = 'wangchanberta-hyp' # DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' # MODEL_DICT = { # 'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params', # 'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params', # } # EMBEDDINGS_PATH = 'data/embeddings.pkl' # DATA_PATH='data/dataset.xlsx' # def load_data(path=DATA_PATH): # df = pd.read_excel(path, sheet_name='Default') # df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context'] # print(len(df)) # print('Load data done') # return df # def load_model(model_name=DEFAULT_MODEL): # model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name]) # tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name]) # print('Load model done') # return model, tokenizer # def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL): # # if torch.cuda.is_available(): # # embedding_model = SentenceTransformer(model_name, device='cuda') # # else: # embedding_model = SentenceTransformer(model_name) # print('Load sentence embedding model done') # return embedding_model # def set_index(vector): # if torch.cuda.is_available(): # res = faiss.StandardGpuResources() # index = faiss.IndexFlatL2(vector.shape[1]) # gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index) # gpu_index_flat.add(vector) # index = gpu_index_flat # else: # index = faiss.IndexFlatL2(vector.shape[1]) # index.add(vector) # return index # def get_embeddings(embedding_model, text_list): # return embedding_model.encode(text_list) # def prepare_sentences_vector(encoded_list): # encoded_list = [i.reshape(1, -1) for i in encoded_list] # encoded_list = np.vstack(encoded_list).astype('float32') # encoded_list = normalize(encoded_list) # return encoded_list # def store_embeddings(df, embeddings): # with open('embeddings.pkl', "wb") as fOut: # pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL) # print('Store embeddings done') # def load_embeddings(file_path=EMBEDDINGS_PATH): # with open(file_path, "rb") as fIn: # stored_data = pickle.load(fIn) # stored_sentences = stored_data['sentences'] # stored_embeddings = stored_data['embeddings'] # print('Load (questions) embeddings done') # return stored_embeddings # def model_pipeline(model, tokenizer, question, similar_context): # inputs = tokenizer(question, similar_context, return_tensors="pt") # with torch.no_grad(): # outputs = model(**inputs) # answer_start_index = outputs.start_logits.argmax() # answer_end_index = outputs.end_logits.argmax() # predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] # Answer = tokenizer.decode(predict_answer_tokens) # return Answer.replace('','@') # def faiss_search(index, question_vector, k=1): # distances, indices = index.search(question_vector, k) # return distances,indices # def create_segment_index(vector): # segment_index = faiss.IndexFlatL2(vector.shape[1]) # segment_index.add(vector) # return segment_index # def predict_faiss(model, tokenizer, embedding_model, df, question, index): # t = time.time() # question = question.strip() # question_vector = get_embeddings(embedding_model, question) # question_vector = prepare_sentences_vector([question_vector]) # distances,indices = faiss_search(index, question_vector) # Answers = [df['Answer'][i] for i in indices[0]] # _time = time.time() - t # output = { # "user_question": question, # "answer": Answers[0], # "totaltime": round(_time, 3), # "score": round(distances[0][0], 4) # } # return output # def predict(model, tokenizer, embedding_model, df, question, index): # t = time.time() # question = question.strip() # question_vector = get_embeddings(embedding_model, question) # question_vector = prepare_sentences_vector([question_vector]) # distances,indices = faiss_search(index, question_vector) # # Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]]) # Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]]) # _time = time.time() - t # output = { # "user_question": question, # "answer": Answer, # "totaltime": round(_time, 3), # "distance": round(distances[0][0], 4) # } # return Answer # def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp # t = time.time() # question = question.strip() # question_vector = get_embeddings(embedding_model, question) # question_vector = prepare_sentences_vector([question_vector]) # distances,indices = faiss_search(index, question_vector) # mostSimContext = df['Context'][indices[0][0]] # pattern = r'(?<=\s{10}).*' # matches = re.search(pattern, mostSimContext, flags=re.DOTALL) # if matches: # mostSimContext = matches.group(0) # mostSimContext = mostSimContext.strip() # mostSimContext = re.sub(r'\s+', ' ', mostSimContext) # segments = sent_tokenize(mostSimContext, engine="crfcut") # segment_embeddings = get_embeddings(embedding_model, segments) # segment_embeddings = prepare_sentences_vector(segment_embeddings) # segment_index = create_segment_index(segment_embeddings) # _distances,_indices = faiss_search(segment_index, question_vector) # mostSimSegment = segments[_indices[0][0]] # Answer = model_pipeline(model, tokenizer,question,mostSimSegment) # if len(Answer) <= 2: # Answer = mostSimSegment # # Find the start and end indices of mostSimSegment within mostSimContext # start_index = mostSimContext.find(Answer) # end_index = start_index + len(Answer) # print(f"answer {len(Answer)} => {Answer} || startIndex =>{start_index} || endIndex =>{end_index}") # print(f"mostSimContext{len(mostSimContext)}=>{mostSimContext}\nsegments{len(segments)}=>{segments}\nmostSimSegment{len(mostSimSegment)}=>{mostSimSegment}") # _time = time.time() - t # output = { # "user_question": question, # "answer": df['Answer'][indices[0][0]], # "totaltime": round(_time, 3), # "distance": round(distances[0][0], 4), # "highlight_start": start_index, # "highlight_end": end_index # } # return output # def highlight_text(text, start_index, end_index): # if start_index < 0: # start_index = 0 # if end_index > len(text): # end_index = len(text) # highlighted_text = "" # for i, char in enumerate(text): # if i == start_index: # highlighted_text += "" # highlighted_text += char # if i == end_index - 1: # highlighted_text += "" # return highlighted_text # def chat_interface_before(question, history): # response = predict(model, tokenizer, embedding_model, df, question, index) # return response # def chat_interface_after(question, history): # response = predict_test(model, tokenizer, embedding_model, df, question, index) # highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"]) # return highlighted_answer # examples=[ # 'ขอเลขที่บัญชีของบริษัทหน่อย', # 'บริษัทตั้งอยู่ที่ถนนอะไร', # 'ขอช่องทางติดตามข่าวสารทาง Line หน่อย', # 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม', # 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter', # # 'ช่องทางติดตามข่าวสารของเรา', # ] # demo_before = gr.ChatInterface(fn=chat_interface_before, # examples=examples) # demo_after = gr.ChatInterface(fn=chat_interface_after, # examples=examples) # interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"]) # if __name__ == "__main__": # # Load your model, tokenizer, data, and index here... # df = load_data() # model, tokenizer = load_model('wangchanberta-hyp') # embedding_model = load_embedding_model() # index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH))) # interface.launch() import random import gradio as gr import time import numpy as np import pandas as pd import torch import faiss from sklearn.preprocessing import normalize from transformers import AutoTokenizer, AutoModelForQuestionAnswering from sentence_transformers import SentenceTransformer, util from pythainlp import Tokenizer import pickle import re from pythainlp.tokenize import sent_tokenize DEFAULT_MODEL = 'wangchanberta-hyp' DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' MODEL_DICT = 'Chananchida/wangchanberta-xet_hyp-params' EMBEDDINGS_PATH = '/content/dataset.xlsx' DATA_PATH='/content/embeddings.pkl' class ChatBot: SHEET_NAME_MDEBERTA = 'mdeberta' SHEET_NAME_DEFAULT = 'Default' UNKNOWN_ANSWERS = ["กรุณาลงรายระเอียดมากกว่านี้ได้มั้ยคะ", "ขอโทษค่ะลูกค้า ดิฉันไม่ทราบจริง ๆ"] def __init__(self, df_path=None, model_path=None, tokenizer_path=None, embedding_model_name=None, embeddingsPath=None): self.df = None self.model = None self.tokenizer = None self.embedding_model = None self.index = None self.k = 5 if all(arg is not None for arg in (df_path, model_path, tokenizer_path, embedding_model_name, embeddingsPath)): self.set_df(df_path) self.set_model(model_path) self.set_tokenizer(tokenizer_path) self.set_embedding_model(embedding_model_name) sentences_vector = self.load_embeddings(embeddingsPath) repared_vector = self.prepare_sentences_vector(sentences_vector) self.set_index(repared_vector) def set_index(self, vector): if torch.cuda.is_available(): # Check if GPU is available res = faiss.StandardGpuResources() index = faiss.IndexFlatL2(vector.shape[1]) gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index) gpu_index_flat.add(vector) self.index = gpu_index_flat else: # If GPU is not available, use CPU-based Faiss index self.index = faiss.IndexFlatL2(vector.shape[1]) self.index.add(vector) return self.index def set_df(self, path): self.df = pd.read_excel(path, sheet_name=self.SHEET_NAME_DEFAULT) self.df.rename(columns={'Response': 'Answer'}, inplace=True) self.df['Context'] = pd.read_excel(path, self.SHEET_NAME_MDEBERTA)['Context'] def set_model(self, model): self.model = AutoModelForQuestionAnswering.from_pretrained(model) def set_tokenizer(self, tokenizer): self.tokenizer = AutoTokenizer.from_pretrained(tokenizer) def set_embedding_model(self, model): self.embedding_model = SentenceTransformer(model) def set_k(self, k_value): self.k = k_value def get_df(self): return self.df def get_model(self): return self.model def get_tokenizer(self): return self.tokenizer def get_embedding_model(self): return self.embedding_model def get_index(self): return self.index def get_k(self): return self.k def get_embeddings(self, text_list): return self.embedding_model.encode(text_list) def prepare_sentences_vector(self, encoded_list): encoded_list = [i.reshape(1, -1) for i in encoded_list] encoded_list = np.vstack(encoded_list).astype('float32') encoded_list = normalize(encoded_list) return encoded_list def load_embeddings(self, file_path): with open(file_path, "rb") as fIn: stored_data = pickle.load(fIn) stored_sentences = stored_data['sentences'] stored_embeddings = stored_data['embeddings'] return stored_embeddings def model_pipeline(self, question, similar_context): inputs = self.tokenizer(question, similar_context, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) answer_start_index = outputs.start_logits.argmax() answer_end_index = outputs.end_logits.argmax() predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] Answer = self.tokenizer.decode(predict_answer_tokens) return Answer.replace('','@') def faiss_search(self, index, question_vector): if index is None: raise ValueError("Index has not been initialized.") distances, indices = index.search(question_vector, self.k) similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)] similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)] return similar_questions, similar_contexts, distances, indices def faiss_segment_search(self, index, question_vector, x=1): if index is None: raise ValueError("Index has not been initialized.") distances, indices = index.search(question_vector, x) return distances, indices def create_segment_index(self, vector): segment_index = faiss.IndexFlatL2(vector.shape[1]) segment_index.add(vector) return segment_index def predict_test(self, question): list_context_for_show = [] list_distance_for_show = [] list_similar_question = [] question = question.strip() question_vector = self.get_embeddings([question]) question_vector = self.prepare_sentences_vector([question_vector]) similar_questions, similar_contexts, distances, indices = self.faiss_search(self.index, question_vector) mostSimContext = similar_contexts[0] pattern = r'(?<=\s{10}).*' matches = re.search(pattern, mostSimContext, flags=re.DOTALL) if matches: mostSimContext = matches.group(0) mostSimContext = mostSimContext.strip() mostSimContext = re.sub(r'\s+', ' ', mostSimContext) segments = sent_tokenize(mostSimContext, engine="crfcut") segment_embeddings = self.get_embeddings(segments) segment_embeddings = self.prepare_sentences_vector(segment_embeddings) segment_index = self.create_segment_index(segment_embeddings) _distances, _indices = self.faiss_segment_search(segment_index, question_vector) mostSimSegment = segments[_indices[0][0]] print(f"_indices => {_indices[0][0]}") answer = self.model_pipeline(question, mostSimSegment) if len(answer) <= 2: answer = mostSimSegment start_index = mostSimContext.find(answer) end_index = start_index + len(answer) print(f"mostSimContext {len(mostSimContext)} =>{mostSimContext}\nsegments {len(segments)} =>{segments}\nmostSimSegment {len(mostSimSegment)} =>{mostSimSegment}") print(f"answer {len(answer)} => {answer} || startIndex =>{start_index} || endIndex =>{end_index}") for i in range(min(5, self.k)): index = indices[0][i] similar_question = similar_questions[i] similar_context = similar_contexts[i] list_similar_question.append(similar_question) list_context_for_show.append(similar_context) list_distance_for_show.append(str(1 - distances[0][i])) distance = list_distance_for_show[0] if float(distance) < 0.5: answer = random.choice(self.UNKNOWN_ANSWERS) output = { "user_question": question, "answer": self.df['Answer'][indices[0][0]], "distance": distance, "highlight_start": start_index, "highlight_end": end_index, "list_context": list_context_for_show, "list_distance": list_distance_for_show } return output def highlight_text(self, text, start_index, end_index): if start_index < 0: start_index = 0 if end_index > len(text): end_index = len(text) highlighted_text = "" for i, char in enumerate(text): if i == start_index: highlighted_text += "" highlighted_text += char if i == end_index - 1: highlighted_text += "" return highlighted_text def chat_interface_before(self, question, history): response = self.predict(question) return response def chat_interface_after(self, question, history): response = self.predict_test(question) highlighted_answer = self.highlight_text(response["answer"], response["highlight_start"], response["highlight_end"]) return highlighted_answer if __name__ == "__main__": bot = ChatBot(df_path=DATA_PATH, model_path=MODEL_DICT, tokenizer_path=MODEL_DICT, embedding_model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL, embeddingsPath=EMBEDDINGS_PATH) # bot.load_data() # bot.load_model() # bot.load_embedding_model() # embeddings = bot.load_embeddings(EMBEDDINGS_PATH) # bot.set_index(bot.prepare_sentences_vector(embeddings)) examples = [ 'ขอเลขที่บัญชีของบริษัทหน่อย', 'บริษัทตั้งอยู่ที่ถนนอะไร', 'ขอช่องทางติดตามข่าวสารทาง Line หน่อย', 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม', 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter', # 'ช่องทางติดตามข่าวสารของเรา', ] demo_before = gr.ChatInterface(fn=bot.chat_interface_before, examples=examples) demo_after = gr.ChatInterface(fn=bot.chat_interface_after, examples=examples) interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"]) interface.launch()