diff --git "a/src/notebooks/advanced_rag.ipynb" "b/src/notebooks/advanced_rag.ipynb"
new file mode 100644--- /dev/null
+++ "b/src/notebooks/advanced_rag.ipynb"
@@ -0,0 +1,1249 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hUCaGdAj9-9F"
+ },
+ "source": [
+ "---\n",
+ "title: \"Advanced RAG\"\n",
+ "---\n",
+ "_Authored by: [Aymeric Roucher](https://huggingface.co/m-ric)_"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DKv51c_h9-9H"
+ },
+ "source": [
+ "This notebook demonstrates how you can build an advanced RAG (Retrieval Augmented Generation) for answering a user's question about a specific knowledge base (here, the HuggingFace documentation), using LangChain.\n",
+ "\n",
+ "For an introduction to RAG, you can check [this other cookbook](rag_zephyr_langchain)!\n",
+ "\n",
+ "RAG systems are complex, with many moving parts: here a RAG diagram, where we noted in blue all possibilities for system enhancement:\n",
+ "\n",
+ "\n",
+ "\n",
+ "> π‘ As you can see, there are many steps to tune in this architecture: tuning the system properly will yield significant performance gains.\n",
+ "\n",
+ "In this notebook, we will take a look into many of these blue notes to see how to tune your RAG system and get the best performance.\n",
+ "\n",
+ "__Let's dig into the model building!__ First, we install the required model dependancies."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "NSX0p0rV9-9I"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install -q torch transformers transformers accelerate bitsandbytes langchain sentence-transformers faiss-gpu openpyxl pacmap"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "8_Uyukt39-9J"
+ },
+ "outputs": [],
+ "source": [
+ "%reload_ext dotenv\n",
+ "%dotenv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "eoujYMwW9-9J"
+ },
+ "outputs": [],
+ "source": [
+ "from tqdm.notebook import tqdm\n",
+ "import pandas as pd\n",
+ "from typing import Optional, List, Tuple\n",
+ "from datasets import Dataset\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "pd.set_option(\n",
+ " \"display.max_colwidth\", None\n",
+ ") # this will be helpful when visualizing retriever outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Kr6rN10U9-9J"
+ },
+ "source": [
+ "### Load your knowledge base"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "qZLVIEVW9-9J"
+ },
+ "outputs": [],
+ "source": [
+ "import datasets\n",
+ "\n",
+ "ds = datasets.load_dataset(\"m-ric/huggingface_doc\", split=\"train\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "836Q7vF49-9K"
+ },
+ "outputs": [],
+ "source": [
+ "from langchain.docstore.document import Document as LangchainDocument\n",
+ "\n",
+ "RAW_KNOWLEDGE_BASE = [\n",
+ " LangchainDocument(page_content=doc[\"text\"], metadata={\"source\": doc[\"source\"]})\n",
+ " for doc in tqdm(ds)\n",
+ "]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0_LxjD5h9-9K"
+ },
+ "source": [
+ "# 1. Retriever - embeddings ποΈ\n",
+ "The __retriever acts like an internal search engine__: given the user query, it returns a few relevant snippets from your knowledge base.\n",
+ "\n",
+ "These snippets will then be fed to the Reader Model to help it generate its answer.\n",
+ "\n",
+ "So __our objective here is, given a user question, to find the most snippets from our knowledge base to answer that question.__\n",
+ "\n",
+ "This is a wide objective, it leaves open some questions. How many snippets should we retrieve? This parameter will be named `top_k`.\n",
+ "\n",
+ "How long should these snippets be? This is called the `chunk size`. There's no one-size-fits-all answers, but here are a few elements:\n",
+ "- π Your `chunk size` is allowed to vary from one snippet to the other.\n",
+ "- Since there will always be some noise in your retrieval, increasing the `top_k` increases the chance to get relevant elements in your retrieved snippets. π― Shooting more arrows increases your probability to hit your target.\n",
+ "- Meanwhile, the summed length of your retrieved documents should not be too high: for instance, for most current models 16k tokens will probably drown your Reader model in information due to [Lost-in-the-middle phenomenon](https://huggingface.co/papers/2307.03172). π― Give your reader model only the most relevant insights, not a huge pile of books!\n",
+ "\n",
+ "\n",
+ "> In this notebook, we use Langchain library since __it offers a huge variety of options for vector databases and allows us to keep document metadata throughout the processing__."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "-uS6Mv8O9-9L"
+ },
+ "source": [
+ "### 1.1 Split the documents into chunks\n",
+ "\n",
+ "- In this part, __we split the documents from our knowledge base into smaller chunks__ which will be the snippets on which the reader LLM will base its answer.\n",
+ "- The goal is to prepare a collection of **semantically relevant snippets**. So their size should be adapted to precise ideas: too small will truncate ideas, too large will dilute them.\n",
+ "\n",
+ "π‘ _Many options exist for text splitting: splitting on words, on sentence boundaries, recursive chunking that processes documents in a tree-like way to preserve structure information... To learn more about chunking, I recommend you read [this great notebook](https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb) by Greg Kamradt._\n",
+ "\n",
+ "\n",
+ "- **Recursive chunking** breaks down the text into smaller parts step by step using a given list of separators sorted from the most important to the least important separator. If the first split doesn't give the right size or shape chunks, the method repeats itself on the new chunks using a different separator. For instance with the list of separators `[\"\\n\\n\", \"\\n\", \".\", \"\"]`:\n",
+ " - The method will first break down the document wherever there is a double line break `\"\\n\\n\"`.\n",
+ " - Resulting documents will be split again on simple line breaks `\"\\n\"`, then on sentence ends `\".\"`.\n",
+ " - And finally, if some chunks are still too big, they will be split whenever they overflow the maximum size.\n",
+ "\n",
+ "- With this method, the global structure is well preserved, at the expense of getting slight variations in chunk size.\n",
+ "\n",
+ "> [This space](https://huggingface.co/spaces/A-Roucher/chunk_visualizer) lets you visualize how different splitting options affect the chunks you get.\n",
+ "\n",
+ "π¬ Let's experiment a bit with chunk sizes, beginning with an arbitrary size, and see how splits work. We use Langchain's implementation of recursive chunking with `RecursiveCharacterTextSplitter`.\n",
+ "- Parameter `chunk_size` controls the length of individual chunks: this length is counted by default as the number of characters in the chunk.\n",
+ "- Parameter `chunk_overlap` lets adjacent chunks get a bit of overlap on each other. This reduces the probability that an idea could be cut in half by the split between two adjacent chunks. We ~arbitrarily set this to 1/10th of the chunk size, you could try different values!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "M4m6TwDJ9-9L"
+ },
+ "outputs": [],
+ "source": [
+ "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
+ "\n",
+ "# We use a hierarchical list of separators specifically tailored for splitting Markdown documents\n",
+ "# This list is taken from LangChain's MarkdownTextSplitter class.\n",
+ "MARKDOWN_SEPARATORS = [\n",
+ " \"\\n#{1,6} \",\n",
+ " \"```\\n\",\n",
+ " \"\\n\\\\*\\\\*\\\\*+\\n\",\n",
+ " \"\\n---+\\n\",\n",
+ " \"\\n___+\\n\",\n",
+ " \"\\n\\n\",\n",
+ " \"\\n\",\n",
+ " \" \",\n",
+ " \"\",\n",
+ "]\n",
+ "\n",
+ "text_splitter = RecursiveCharacterTextSplitter(\n",
+ " chunk_size=1000, # the maximum number of characters in a chunk: we selected this value arbitrarily\n",
+ " chunk_overlap=100, # the number of characters to overlap between chunks\n",
+ " add_start_index=True, # If `True`, includes chunk's start index in metadata\n",
+ " strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document\n",
+ " separators=MARKDOWN_SEPARATORS,\n",
+ ")\n",
+ "\n",
+ "docs_processed = []\n",
+ "for doc in RAW_KNOWLEDGE_BASE:\n",
+ " docs_processed += text_splitter.split_documents([doc])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "d5jJUMgb9-9M"
+ },
+ "source": [
+ "We also have to keep in mind that when embedding documents, we will use an embedding model that has accepts a certain maximum sequence length `max_seq_length`.\n",
+ "\n",
+ "So we should make sure that our chunk sizes are below this limit, because any longer chunk will be truncated before processing, thus losing relevancy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "referenced_widgets": [
+ "ae043feeb0914c879e2a9008b413d952"
+ ]
+ },
+ "id": "B4hoki349-9M",
+ "outputId": "64f92a61-7839-476d-f456-7eefde04c20b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Model's maximum sequence length: 512\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "ae043feeb0914c879e2a9008b413d952",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/31085 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo4AAAGzCAYAAAChApYOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUuElEQVR4nO3deVwV9eL/8TfIrgKiCaKoXC33LSzFvURwTcsl09JM85Z60ywtK82lcitzTfN20xa9llbmtVJxKTXJLXFLzcqyNKBExBURPr8/+p35egR0UDhAvp6Ph486n/mcz3zmM3Nm3mdmzuBmjDECAAAArsG9oDsAAACAooHgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALAl34Pj2LFj5ebmlt+zkSS1atVKrVq1sl5/+eWXcnNz07Jly1wy/4cffliVK1d2ybyu15kzZzRgwACFhITIzc1Nw4YNy3Ubbm5uGjt2bJ737WZUuXJlPfzwwwXdjWt6+OGHVaJEiXydh6u2K1ftF1y9/7lRP//8s9zc3LRw4cI8a3PhwoVyc3PTzz//nGdt2lW5cmV17NjR5fO9UWfOnFHZsmW1aNEiq8yVx9G/u7w4Btrl2P537NiRb/O4Xj179lSPHj2u6725Co6OQXD88/HxUWhoqGJiYjRz5kydPn36ujpxpePHj2vs2LGKj4/Pk/byUmHumx2vvPKKFi5cqMcff1zvvfeeHnrooYLu0t/K4sWLNX369ILuxnU5d+6cxo4dqy+//LKgu5InivK6wM1rxowZKlmypHr27FnQXSlQr7zyipYvX54v7do9BuZXHwqDZ555Rh999JF2796d6/de1xnH8ePH67333tPcuXP1r3/9S5I0bNgw1alTR3v27HGq+8ILL+j8+fO5av/48eMaN25crsPZmjVrtGbNmly9J7eu1rd///vfOnToUL7O/0atX79ejRs31osvvqgHH3xQERERBd2lv5WiHFbOnTuncePGFVhwPH/+vF544YU8a68orwvcnNLT0zVjxgwNGDBAxYoVs8qv5zha1OVXaMvNMfDvHBwbNGighg0b6rXXXsv1e68rOLZr104PPvig+vXrp1GjRmn16tVau3atkpKSdM899zht4B4eHvLx8bme2dh27tw5SZKXl5e8vLzydV5X4+npKW9v7wKbvx1JSUkKDAws6G4AWfj4+MjDw6OguwEUmJUrV+qPP/7IcgnRFcfRmwXHwP/To0cPffzxxzpz5kyu3pdn9zjefffdGj16tH755Re9//77Vnl292bExsaqWbNmCgwMVIkSJVStWjU999xzkv66L+iOO+6QJPXr18+6LO6476ZVq1aqXbu2du7cqRYtWsjPz89675X3ODpkZGToueeeU0hIiIoXL6577rlHv/76q1OdnO41u7zNa/Utu3scz549q6eeekphYWHy9vZWtWrV9Oqrr8oY41TPzc1NQ4YM0fLly1W7dm15e3urVq1aWrVqVfYDfoWkpCT1799fwcHB8vHxUb169fTOO+9Y0x33Wx05ckSfffaZ1fer3XuUlpamJ598UrfccotKliype+65R7/99lu2dXft2qV27drJ399fJUqUUOvWrfXNN99kqZeSkqInn3xSlStXlre3typUqKA+ffrozz//lJTzPVGO/l9+NsyxLezZs0ctW7aUn5+fqlatat1T9tVXX6lRo0by9fVVtWrVtHbt2iz9OXbsmB555BEFBwdbY/72229nO+8PP/xQL7/8sipUqCAfHx+1bt1aP/zwg1N/PvvsM/3yyy/W+F7PPa8pKSkaNmyYtc1UrVpVkydPVmZmplXHcT/aq6++qvnz56tKlSry9vbWHXfcoe3bt2dpc+nSpapZs6Z8fHxUu3ZtffLJJ07b688//6xbbrlFkjRu3Dir/1fec3js2DF16dJFJUqU0C233KKnn35aGRkZTnWWLFmiiIgIlSxZUv7+/qpTp45mzJhxzeW+cn6OfccPP/yghx9+WIGBgQoICFC/fv2sL4s5sbMuMjMzr7o+HbZu3aq2bdsqICBAfn5+atmypb7++utrLk920tLS1LFjRwUEBGjLli25Xs5Lly5pwoQJ1vquXLmynnvuOaWlpVl1hg8frtKlSzvtY/71r3/Jzc1NM2fOtMoSExPl5uamuXPnXrXPBw8eVLdu3RQUFCQfHx81bNhQK1asyFJv//79uvvuu+Xr66sKFSropZdectpmHTIzMzV27FiFhobKz89Pd911l7777rts98F2PgvXsmbNGtWvX18+Pj6qWbOmPv74Y6fpycnJevrpp1WnTh2VKFFC/v7+ateuXbaX8GbNmqVatWrJz89PpUqVUsOGDbV48WKnOnb2KTlZvny5KleurCpVqjiVZ3ccvdFjxoULFzR27Fjddttt8vHxUbly5XTffffpxx9/tOrYOX5d7d7Y6/1Mu7m56ezZs3rnnXesz++17gXP62Pgtfpg95h3pZMnT+rOO+9UhQoVrCuUaWlpevHFF1W1alV5e3srLCxMI0eOdPpcO/pkZ52fPn1aw4YNs46zZcuWVZs2bfTtt9861WvTpo3Onj2r2NjYa/b7cnn69f6hhx7Sc889pzVr1ujRRx/Nts7+/fvVsWNH1a1bV+PHj5e3t7d++OEHa0dco0YNjR8/XmPGjNHAgQPVvHlzSVKTJk2sNk6cOKF27dqpZ8+eevDBBxUcHHzVfr388styc3PTM888o6SkJE2fPl1RUVGKj4+Xr6+v7eWz07fLGWN0zz33aMOGDerfv7/q16+v1atXa8SIETp27Jhef/11p/qbN2/Wxx9/rEGDBqlkyZKaOXOmunbtqqNHj6p06dI59uv8+fNq1aqVfvjhBw0ZMkTh4eFaunSpHn74YaWkpGjo0KGqUaOG3nvvPT355JOqUKGCnnrqKUmywkJ2BgwYoPfff1+9evVSkyZNtH79enXo0CFLvf3796t58+by9/fXyJEj5enpqTfffFOtWrWywpv0103JzZs314EDB/TII4/o9ttv159//qkVK1bot99+U5kyZa6+ArJx8uRJdezYUT179lT37t01d+5c9ezZU4sWLdKwYcP02GOPqVevXpo6daq6deumX3/9VSVLlpT014GzcePG1ofxlltu0RdffKH+/fsrNTU1y03TkyZNkru7u55++mmdOnVKU6ZMUe/evbV161ZJ0vPPP69Tp07pt99+s9Ztbn9Qcu7cObVs2VLHjh3TP//5T1WsWFFbtmzRqFGj9Pvvv2e59Lp48WKdPn1a//znP+Xm5qYpU6bovvvu008//SRPT09J0meffab7779fderU0cSJE3Xy5En1799f5cuXt9q55ZZbNHfuXD3++OO69957dd9990mS6tata9XJyMhQTEyMGjVqpFdffVVr167Va6+9pipVqujxxx+X9NeXwgceeECtW7fW5MmTJUkHDhzQ119/raFDh+ZqLBx69Oih8PBwTZw4Ud9++63eeustlS1b1mo/O3bWxbXWp/TXZa127dopIiJCL774otzd3bVgwQLdfffd2rRpk+68807by3H+/Hl17txZO3bs0Nq1a60voblZzgEDBuidd95Rt27d9NRTT2nr1q2aOHGiDhw4oE8++USS1Lx5c73++uvav3+/ateuLUnatGmT3N3dtWnTJj3xxBNWmSS1aNEixz7v379fTZs2Vfny5fXss8+qePHi+vDDD9WlSxd99NFHuvfeeyVJCQkJuuuuu3Tp0iWr3vz587Pdv44aNUpTpkxRp06dFBMTo927dysmJkYXLlxwqpfbz0J2Dh8+rPvvv1+PPfaY+vbtqwULFqh79+5atWqV2rRpI0n66aeftHz5cnXv3l3h4eFKTEzUm2++qZYtW+q7775TaGiopL9uRXriiSfUrVs3DR06VBcuXNCePXu0detW9erVS1Lu9ylX2rJli26//fZrLpfD9R4zMjIy1LFjR61bt049e/bU0KFDdfr0acXGxmrfvn2qUqVKro9fuXGtbf29997TgAEDdOedd2rgwIGSlCVMXy4/joFX64PdY96V/vzzT7Vp00bJycn66quvVKVKFWVmZuqee+7R5s2bNXDgQNWoUUN79+7V66+/ru+//z7LpXI76/yxxx7TsmXLNGTIENWsWVMnTpzQ5s2bdeDAAaftq2bNmvL19dXXX39tfZZtMbmwYMECI8ls3749xzoBAQGmQYMG1usXX3zRXD6b119/3Ugyf/zxR45tbN++3UgyCxYsyDKtZcuWRpKZN29ettNatmxpvd6wYYORZMqXL29SU1Ot8g8//NBIMjNmzLDKKlWqZPr27XvNNq/Wt759+5pKlSpZr5cvX24kmZdeesmpXrdu3Yybm5v54YcfrDJJxsvLy6ls9+7dRpKZNWtWlnldbvr06UaSef/9962yixcvmsjISFOiRAmnZa9UqZLp0KHDVdszxpj4+HgjyQwaNMipvFevXkaSefHFF62yLl26GC8vL/Pjjz9aZcePHzclS5Y0LVq0sMrGjBljJJmPP/44y/wyMzONMf+3jR05csRpumNdbtiwwSpzbAuLFy+2yg4ePGgkGXd3d/PNN99Y5atXr86y3vr372/KlStn/vzzT6d59ezZ0wQEBJhz5845zbtGjRomLS3Nqjdjxgwjyezdu9cq69Chg9M2cC1XbncTJkwwxYsXN99//71TvWeffdYUK1bMHD161BhjzJEjR4wkU7p0aZOcnGzV+/TTT40k87///c8qq1OnjqlQoYI5ffq0Vfbll18aSU59/eOPP7KsW4e+ffsaSWb8+PFO5Q0aNDARERHW66FDhxp/f39z6dIl22PgcOW8HfuORx55xKnevffea0qXLn3N9nJaF3bXZ2Zmprn11ltNTEyMtX0aY8y5c+dMeHi4adOmzVXn75jP0qVLzenTp03Lli1NmTJlzK5du5zq2V1Ox2dywIABTvWefvppI8msX7/eGGNMUlKSkWTeeOMNY4wxKSkpxt3d3XTv3t0EBwdb73viiSdMUFCQtWyOberyz0jr1q1NnTp1zIULF6yyzMxM06RJE3PrrbdaZcOGDTOSzNatW62ypKQkExAQ4PR5TkhIMB4eHqZLly5OyzB27Fgj6bo+CzmpVKmSkWQ++ugjq+zUqVOmXLlyTseoCxcumIyMDKf3HjlyxHh7eztt7507dza1atW66jzt7lOyk56ebtzc3MxTTz2VZdqVx1FjbuyY8fbbbxtJZtq0aVmmObYHu8ev7Laby/t4vZ/p4sWLZ3tMzk5+HAOv1ge7x7zLM9Pvv/9uatWqZf7xj3+Yn3/+2arz3nvvGXd3d7Np0yanecybN89IMl9//bVVZnedBwQEmMGDB9taxttuu820a9fOVl2HPH8cT4kSJa7662rHvQWffvppri43XM7b21v9+vWzXb9Pnz7WWSZJ6tatm8qVK6fPP//8uuZv1+eff65ixYpZ3/AdnnrqKRlj9MUXXziVR0VFOX2rqlu3rvz9/fXTTz9dcz4hISF64IEHrDJPT0898cQTOnPmjL766qvr6rukLH2/8htzRkaG1qxZoy5duugf//iHVV6uXDn16tVLmzdvVmpqqiTpo48+Ur169bL9ZnO9j5ooUaKE068Pq1WrpsDAQNWoUcPpW5/j/x1jaYzRRx99pE6dOskYoz///NP6FxMTo1OnTmU5rd+vXz+ne2gdZ5yvtX5yY+nSpWrevLlKlSrl1KeoqChlZGRo48aNTvXvv/9+lSpVKsc+HT9+XHv37lWfPn2czri1bNlSderUyXX/HnvsMafXzZs3d1r+wMDA67r0kdt5njhxwtqurte11md8fLwOHz6sXr166cSJE9a6OHv2rFq3bq2NGzfa2oedOnVK0dHROnjwoL788kvVr18/23rXWk7HZ3L48OFO9RxnTj777DNJf51BqV69urWtfP311ypWrJhGjBihxMREHT58WNJfZxybNWuW42cvOTlZ69evV48ePXT69Glr+U+cOKGYmBgdPnxYx44ds/rWuHFjpzOwt9xyi3r37u3U5rp163Tp0iUNGjTIqdzxI8vL5fazkJ3Q0FCn/Y2/v7/69OmjXbt2KSEhQdJfxxN3978OhRkZGTpx4oR1C9Xl+4DAwED99ttv2d4KIl3fPuVyycnJMsY4fZ6v5XqPGR999JHKlCmT7bg7tofcHr9yI68/0/lxDMxJbo55Dr/99ptatmyp9PR0bdy4UZUqVbKmLV26VDVq1FD16tWdtpm7775bkrRhwwantuys88DAQG3dulXHjx+/5vI4Pl+5ked3ojueQZWT+++/X2+99ZYGDBigZ599Vq1bt9Z9992nbt26WR/eaylfvnyufgRz6623Or12c3NT1apV8/3ZYr/88otCQ0OdQqv01yVvx/TLVaxYMUsbpUqV0smTJ685n1tvvTXL+OU0H7t9d3d3z3J5oFq1ak6v//jjD507dy5LuWP+mZmZ+vXXX1WrVi39+OOP6tq1a677cjUVKlTIcuALCAhQWFhYljJJ1lj+8ccfSklJ0fz58zV//vxs205KSnJ6feX6cezgr7V+cuPw4cPas2dPjpdPctsnx7qvWrVqlraqVq161QPZlXx8fLL068rtc9CgQfrwww/Vrl07lS9fXtHR0erRo4fatm1rez5Xutoy+vv750u7kqyA1bdv3xzbOHXq1DUP9MOGDdOFCxe0a9cu1apV67r64+/vb30mr1yXISEhCgwMdPqcN2/e3AqamzZtUsOGDdWwYUMFBQVp06ZNCg4O1u7du61LrNn54YcfZIzR6NGjNXr06GzrJCUlqXz58vrll1+yvTx35X4hp+0xKCgoyzjm9rOQnapVq2bZP9x2222S/ro3LyQkRJmZmZoxY4beeOMNHTlyxOme3csv9z7zzDNau3at7rzzTlWtWlXR0dHq1auXmjZtKun69inZMVfc/34113vM+PHHH1WtWrWr/hgtt8ev3Mjrz3R+HANzkptjnsNDDz0kDw8PHThwQCEhIU7vOXz4sA4cOHDd+3wp6zqfMmWK+vbtq7CwMEVERKh9+/bq06ePU9B1MMbk+sRNngbH3377TadOncr2IOXg6+urjRs3asOGDfrss8+0atUqffDBB7r77ru1Zs0ap0cQXK2NvJbTwGVkZNjqU17IaT652ZEUdVdbD9nJacyuNZaOM0UPPvhgjsHg8vv77LSZFzIzM9WmTRuNHDky2+mOg54r+3SteV2ubNmyio+P1+rVq/XFF1/oiy++0IIFC9SnTx+nG9XzYr43uox2t5GpU6fmeJbQzj2snTt31pIlSzRp0iS9++67OX5BtrucdnbyzZo107///W/99NNP2rRpk5o3by43Nzc1a9ZMmzZtUmhoqDIzM62zrNlxLP/TTz+tmJiYbOtcbV9/o3L7Wbher7zyikaPHq1HHnlEEyZMUFBQkNzd3TVs2DCnM8o1atTQoUOHtHLlSq1atUofffSR3njjDY0ZM0bjxo27rn3K5YKCguTm5parL6KF4ZiR2322VDj67Ur33Xef3n33Xc2YMUMTJ050mpaZmak6depo2rRp2b73ypMgdsauR48eat68uT755BOtWbNGU6dO1eTJk/Xxxx+rXbt2Tu87efJklpNr15KnwfG9996TpBx3Mg7u7u5q3bq1WrdurWnTpumVV17R888/rw0bNigqKirPn5DvOHPgYIzRDz/84PQhLlWqlFJSUrK895dffnFK6bnpW6VKlbR27VqdPn3a6VvbwYMHrel5oVKlStqzZ48yMzOdDko3Mp9KlSopMzPT+mbqcOVzKm+55Rb5+fll+/zKgwcPyt3d3drwq1Spon379l11vo5vnleui7z8xijJ+qV4RkaGoqKi8qzdG912q1SpojNnzuRZnxzrPrtfC19ZllefOy8vL3Xq1EmdOnVSZmamBg0apDfffFOjR4/O16BxpbxYF9JflzdvZH106dJF0dHRevjhh1WyZMlr/oo5J47P5OHDh60zKdJfP8hISUlx+pw7AmFsbKy2b9+uZ599VtJfP4SZO3euQkNDVbx48as+w86x3/P09Lzm8leqVCnLflbKur+4fHsMDw+3yk+cOJElMOXFZ8Fx1vTybeH777+XJOtX9suWLdNdd92l//znP07vTUlJyfKDveLFi+v+++/X/fffr4sXL+q+++7Tyy+/rFGjRt3wPsXDw0NVqlTRkSNHcv3e3KpSpYq2bt2q9PR060d0V7J7/MqvfXZuj7V5fQzMqQ+5OeY5/Otf/1LVqlU1ZswYBQQEWJ9H6a91sXv3brVu3TpPs0+5cuU0aNAgDRo0SElJSbr99tv18ssvOwXHS5cu6ddff9U999yTq7bz7B7H9evXa8KECQoPD89yX8vlkpOTs5Q5vs07fnpevHhxSVk3xOv17rvvOt13uWzZMv3+++9OA1ilShV98803unjxolW2cuXKLI/tyU3f2rdvr4yMDM2ePdup/PXXX5ebm1uW5H+92rdvr4SEBH3wwQdW2aVLlzRr1iyVKFFCLVu2zHWbjr5d/vgOSVl+yVisWDFFR0fr008/dbr0n5iYqMWLF6tZs2bWpYeuXbtq9+7d1q8/L+f4tuQ4WF9+/1JGRkaOl36uV7FixdS1a1d99NFH2YbZP/7447raLV68uE6dOnXd/erRo4fi4uK0evXqLNNSUlJ06dKlXLUXGhqq2rVr691333V6VtdXX32lvXv3OtX18/Oz5nO9Tpw44fTa3d3d+oJ25aMl8tuNrouIiAhVqVJFr776arbPOcvNNtKnTx/NnDlT8+bN0zPPPHNd/Wnfvr2krJ9Bx5mKy594EB4ervLly+v1119Xenq6dTm1efPm+vHHH7Vs2TI1btz4qpcqy5Ytq1atWunNN9/U77//nmX65cvfvn17ffPNN9q2bZvT9Mv/bJ4ktW7dWh4eHlnC85X7SClvPgvHjx932t+kpqbq3XffVf369a1LhsWKFctypmvp0qXW/ZsOV27bXl5eqlmzpowxSk9Pz5N9SmRkpEv+PF3Xrl31559/ZjvujrGwe/zy9/dXmTJlstxz+sYbb9xQH4sXL257X5Qfx8Cc+pCbY97lRo8eraefflqjRo1y2v579OihY8eO6d///neW95w/f15nz57NVZ8zMjKy7PfKli2r0NDQLPvg7777ThcuXMjxyTA5ua4zjl988YUOHjyoS5cuKTExUevXr1dsbKwqVaqkFStWXPVBpePHj9fGjRvVoUMHVapUSUlJSXrjjTdUoUIFNWvWTNJf4SEwMFDz5s1TyZIlVbx4cTVq1MjpG2puBAUFqVmzZurXr58SExM1ffp0Va1a1emRQQMGDNCyZcvUtm1b9ejRQz/++KPef//9LPf45aZvnTp10l133aXnn39eP//8s+rVq6c1a9bo008/1bBhw676eIHcGDhwoN588009/PDD2rlzpypXrqxly5bp66+/1vTp07Pco2JH/fr19cADD+iNN97QqVOn1KRJE61bty7bM1cvvfSS9WzOQYMGycPDQ2+++abS0tI0ZcoUq96IESO0bNkyde/eXY888ogiIiKUnJysFStWaN68eapXr55q1aqlxo0ba9SoUUpOTlZQUJCWLFmS68Bkx6RJk7RhwwY1atRIjz76qGrWrKnk5GR9++23Wrt2bbZfcq4lIiJCH3zwgYYPH6477rhDJUqUUKdOnWy/f8SIEVqxYoU6duyohx9+WBERETp79qz27t2rZcuW6eeff871Y4teeeUVde7cWU2bNlW/fv108uRJzZ49W7Vr13YKRL6+vqpZs6Y++OAD3XbbbQoKClLt2rWtR7rYMWDAACUnJ+vuu+9WhQoV9Msvv2jWrFmqX7++01kyV7jRdeHu7q633npL7dq1U61atdSvXz+VL19ex44d04YNG+Tv76///e9/ttsbMmSIUlNT9fzzzysgIMB6/qxd9erVU9++fTV//nylpKSoZcuW2rZtm9555x116dJFd911l1P95s2ba8mSJapTp451Vuj2229X8eLF9f3331/1/kaHOXPmqFmzZqpTp44effRR/eMf/1BiYqLi4uL022+/Wc86HDlypN577z21bdtWQ4cOtR7H4zgT5BAcHKyhQ4fqtdde0z333KO2bdtq9+7d+uKLL1SmTBmnMy558Vm47bbb1L9/f23fvl3BwcF6++23lZiYqAULFlh1OnbsqPHjx6tfv35q0qSJ9u7dq0WLFmW5Hyw6OlohISFq2rSpgoODdeDAAc2ePVsdOnSw9rE3uk/p3Lmz3nvvPX3//fd5dik+O3369NG7776r4cOHa9u2bWrevLnOnj2rtWvXatCgQercuXOujl8DBgzQpEmTNGDAADVs2FAbN260zuxer4iICK1du1bTpk1TaGiowsPDc3zMTX4cA6/WB7vHvCtNnTpVp06d0uDBg1WyZEk9+OCDeuihh/Thhx/qscce04YNG9S0aVNlZGTo4MGD+vDDD7V69Wo1bNjQdp9Pnz6tChUqqFu3bqpXr55KlCihtWvXavv27Vn+SkxsbKz8/PysR1PZlpufYDt+Wu745+XlZUJCQkybNm3MjBkznH7y7nDlYwTWrVtnOnfubEJDQ42Xl5cJDQ01DzzwQJZHLnz66aemZs2axsPDw+mn/i1btszxkQg5PY7nv//9rxk1apQpW7as8fX1NR06dDC//PJLlve/9tprpnz58sbb29s0bdrU7NixI0ubV+vblY/jMcaY06dPmyeffNKEhoYaT09Pc+utt5qpU6c6Pd7DmL9+Zp/dz+dzekzQlRITE02/fv1MmTJljJeXl6lTp062j0fIzaMIzp8/b5544glTunRpU7x4cdOpUyfz66+/ZvvIlm+//dbExMSYEiVKGD8/P3PXXXeZLVu2ZGnzxIkTZsiQIaZ8+fLGy8vLVKhQwfTt29fp8RU//vijiYqKMt7e3iY4ONg899xzJjY2NtvH8WS3LeS0jNmNcWJiohk8eLAJCwsznp6eJiQkxLRu3drMnz/fqnP5Y1Uul91jKM6cOWN69eplAgMDszzuJjvZrd/Tp0+bUaNGmapVqxovLy9TpkwZ06RJE/Pqq6+aixcvOs176tSp2S7nletnyZIlpnr16sbb29vUrl3brFixwnTt2tVUr17dqd6WLVtMRESE8fLycmqnb9++pnjx4lnmdeXne9myZSY6OtqULVvWeHl5mYoVK5p//vOf5vfff7/qOGTXb0fbVz66K6dHNl0pp3WRm/VpjDG7du0y9913nyldurTx9vY2lSpVMj169DDr1q276vxzms/IkSONJDN79uxcL2d6eroZN26cCQ8PN56eniYsLMyMGjXK6XE5DnPmzDGSzOOPP+5UHhUVZSRl6X9Oy//jjz+aPn36mJCQEOPp6WnKly9vOnbsaJYtW+ZUb8+ePaZly5bGx8fHlC9f3kyYMMH85z//ybIMly5dMqNHjzYhISHG19fX3H333ebAgQOmdOnS5rHHHnNq085nISeO/cDq1atN3bp1jbe3t6levXqW9XHhwgXz1FNPmXLlyhlfX1/TtGlTExcXl2Xf/+abb5oWLVpY20GVKlXMiBEjzKlTp5zas7NPyUlaWpopU6aMmTBhglN5To/juZFjxrlz58zzzz9vbUshISGmW7duTo+YsXv8OnfunOnfv78JCAgwJUuWND169LAeC3W9n+mDBw+aFi1aGF9f3yyPaspOfhwDr9YHO8e87B5hmJGRYR544AHj4eFhli9fboz569FBkydPNrVq1TLe3t6mVKlSJiIiwowbN85p+7KzztPS0syIESNMvXr1TMmSJU3x4sVNvXr1rMdzXa5Ro0bmwQcftDUWl3P7/50BcJOpX7++brnlljx9dA5wPVJSUlSqVCm99NJLev755wu6OwVqwoQJWrBggQ4fPuyyH2bi5hMfH6/bb79d3377bY4//stJnj/HEUDhkp6enuVS/5dffqndu3dn+yc6gfx0/vz5LGWO+zbZHqUnn3xSZ86c0ZIlSwq6K/gbmzRpkrp165br0ChJnHEE/uZ+/vlnRUVF6cEHH1RoaKgOHjyoefPmKSAgQPv27bvqnyYD8trChQu1cOFCtW/fXiVKlNDmzZv13//+V9HR0dn+EAZA4ZLnDwAHULiUKlVKEREReuutt/THH3+oePHi6tChgyZNmkRohMvVrVtXHh4emjJlilJTU60fzLz00ksF3TUANnDGEQAAALZwjyMAAABsITgCAADAFu5xvE6ZmZk6fvy4SpYsmed/IhEAAOQPY4xOnz6t0NDQHP92PHJGcLxOx48fz/L3KAEAQNHw66+/qkKFCgXdjSKH4HidHH/C6Ndff83271Jej/T0dK1Zs0bR0dE5/uF55A3G2jUYZ9dhrF2DcXad/Brr1NRUhYWFXfefIrzZERyvk+PytL+/f54GRz8/P/n7+7NDymeMtWswzq7DWLsG4+w6+T3W3GZ2fbi4DwAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALDFo6A7ABSk2mNXKy3DraC7kSs/T+pQ0F0AANykOOMIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAW1waHDdu3KhOnTopNDRUbm5uWr58uTUtPT1dzzzzjOrUqaPixYsrNDRUffr00fHjx53aSE5OVu/eveXv76/AwED1799fZ86ccaqzZ88eNW/eXD4+PgoLC9OUKVOy9GXp0qWqXr26fHx8VKdOHX3++ef5sswAAAB/Fy4NjmfPnlW9evU0Z86cLNPOnTunb7/9VqNHj9a3336rjz/+WIcOHdI999zjVK93797av3+/YmNjtXLlSm3cuFEDBw60pqempio6OlqVKlXSzp07NXXqVI0dO1bz58+36mzZskUPPPCA+vfvr127dqlLly7q0qWL9u3bl38LDwAAUMS59C/HtGvXTu3atct2WkBAgGJjY53KZs+erTvvvFNHjx5VxYoVdeDAAa1atUrbt29Xw4YNJUmzZs1S+/bt9eqrryo0NFSLFi3SxYsX9fbbb8vLy0u1atVSfHy8pk2bZgXMGTNmqG3bthoxYoQkacKECYqNjdXs2bM1b968fBwBAACAoqtQ/8nBU6dOyc3NTYGBgZKkuLg4BQYGWqFRkqKiouTu7q6tW7fq3nvvVVxcnFq0aCEvLy+rTkxMjCZPnqyTJ0+qVKlSiouL0/Dhw53mFRMT43Tp/EppaWlKS0uzXqempkr66xJ7enp6HiytrHbyqj3kzDHG3u6mgHuSe0Vp+2Cbdh3G2jUYZ9fJr7Fm3d2YQhscL1y4oGeeeUYPPPCA/P39JUkJCQkqW7asUz0PDw8FBQUpISHBqhMeHu5UJzg42JpWqlQpJSQkWGWX13G0kZ2JEydq3LhxWcrXrFkjPz+/3C/gVVx55hX5Z0LDzILuQq4Vxftx2aZdh7F2DcbZdfJ6rM+dO5en7d1sCmVwTE9PV48ePWSM0dy5cwu6O5KkUaNGOZ2lTE1NVVhYmKKjo61ge6PS09MVGxurNm3ayNPTM0/aRPYcYz16h7vSMt0Kuju5sm9sTEF3wTa2addhrF2DcXad/BprxxVDXJ9CFxwdofGXX37R+vXrnUJZSEiIkpKSnOpfunRJycnJCgkJseokJiY61XG8vlYdx/TseHt7y9vbO0u5p6dnnu888qNNZC8t001pGUUrOBbFbYNt2nUYa9dgnF0nr8ea9XZjCtVzHB2h8fDhw1q7dq1Kly7tND0yMlIpKSnauXOnVbZ+/XplZmaqUaNGVp2NGzc63cMQGxuratWqqVSpUladdevWObUdGxuryMjI/Fo0AACAIs+lwfHMmTOKj49XfHy8JOnIkSOKj4/X0aNHlZ6erm7dumnHjh1atGiRMjIylJCQoISEBF28eFGSVKNGDbVt21aPPvqotm3bpq+//lpDhgxRz549FRoaKknq1auXvLy81L9/f+3fv18ffPCBZsyY4XSZeejQoVq1apVee+01HTx4UGPHjtWOHTs0ZMgQVw4HAABAkeLS4Lhjxw41aNBADRo0kCQNHz5cDRo00JgxY3Ts2DGtWLFCv/32m+rXr69y5cpZ/7Zs2WK1sWjRIlWvXl2tW7dW+/bt1axZM6dnNAYEBGjNmjU6cuSIIiIi9NRTT2nMmDFOz3ps0qSJFi9erPnz56tevXpatmyZli9frtq1a7tuMAAAAIoYl97j2KpVKxmT8+NPrjbNISgoSIsXL75qnbp162rTpk1XrdO9e3d17979mvMDAADAXwrVPY4AAAAovAiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALDFpcFx48aN6tSpk0JDQ+Xm5qbly5c7TTfGaMyYMSpXrpx8fX0VFRWlw4cPO9VJTk5W79695e/vr8DAQPXv319nzpxxqrNnzx41b95cPj4+CgsL05QpU7L0ZenSpapevbp8fHxUp04dff7553m+vAAAAH8nLg2OZ8+eVb169TRnzpxsp0+ZMkUzZ87UvHnztHXrVhUvXlwxMTG6cOGCVad3797av3+/YmNjtXLlSm3cuFEDBw60pqempio6OlqVKlXSzp07NXXqVI0dO1bz58+36mzZskUPPPCA+vfvr127dqlLly7q0qWL9u3bl38LDwAAUMR5uHJm7dq1U7t27bKdZozR9OnT9cILL6hz586SpHfffVfBwcFavny5evbsqQMHDmjVqlXavn27GjZsKEmaNWuW2rdvr1dffVWhoaFatGiRLl68qLffflteXl6qVauW4uPjNW3aNCtgzpgxQ23bttWIESMkSRMmTFBsbKxmz56tefPmZdu/tLQ0paWlWa9TU1MlSenp6UpPT8+T8XG0k1ftIWeOMfZ2NwXck9wrStsH27TrMNauwTi7Tn6NNevuxrg0OF7NkSNHlJCQoKioKKssICBAjRo1UlxcnHr27Km4uDgFBgZaoVGSoqKi5O7urq1bt+ree+9VXFycWrRoIS8vL6tOTEyMJk+erJMnT6pUqVKKi4vT8OHDneYfExOT5dL55SZOnKhx48ZlKV+zZo38/PxuYMmzio2NzdP2kLMJDTMLugu5VhRvq2Cbdh3G2jUYZ9fJ67E+d+5cnrZ3syk0wTEhIUGSFBwc7FQeHBxsTUtISFDZsmWdpnt4eCgoKMipTnh4eJY2HNNKlSqlhISEq84nO6NGjXIKm6mpqQoLC1N0dLT8/f1zs6g5Sk9PV2xsrNq0aSNPT888aRPZc4z16B3uSst0K+ju5Mq+sTEF3QXb2KZdh7F2DcbZdfJrrB1XDHF9Ck1wLOy8vb3l7e2dpdzT0zPPdx750Sayl5bpprSMohUci+K2wTbtOoy1azDOrpPXY816uzGF5nE8ISEhkqTExESn8sTERGtaSEiIkpKSnKZfunRJycnJTnWya+PyeeRUxzEdAAAAWRWa4BgeHq6QkBCtW7fOKktNTdXWrVsVGRkpSYqMjFRKSop27txp1Vm/fr0yMzPVqFEjq87GjRudbn6NjY1VtWrVVKpUKavO5fNx1HHMBwAAAFm5NDieOXNG8fHxio+Pl/TXD2Li4+N19OhRubm5adiwYXrppZe0YsUK7d27V3369FFoaKi6dOkiSapRo4batm2rRx99VNu2bdPXX3+tIUOGqGfPngoNDZUk9erVS15eXurfv7/279+vDz74QDNmzHC6P3Ho0KFatWqVXnvtNR08eFBjx47Vjh07NGTIEFcOBwAAQJHi0nscd+zYobvuust67Qhzffv21cKFCzVy5EidPXtWAwcOVEpKipo1a6ZVq1bJx8fHes+iRYs0ZMgQtW7dWu7u7uratatmzpxpTQ8ICNCaNWs0ePBgRUREqEyZMhozZozTsx6bNGmixYsX64UXXtBzzz2nW2+9VcuXL1ft2rVdMAoAAABFk0uDY6tWrWRMzs/Nc3Nz0/jx4zV+/Pgc6wQFBWnx4sVXnU/dunW1adOmq9bp3r27unfvfvUOAwAAwFJo7nEEAABA4UZwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADY4lHQHcDfR+VnPyvoLtjmXcxoyp0F3QsAAIoWzjgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwJZCFRwzMjI0evRohYeHy9fXV1WqVNGECRNkjLHqGGM0ZswYlStXTr6+voqKitLhw4ed2klOTlbv3r3l7++vwMBA9e/fX2fOnHGqs2fPHjVv3lw+Pj4KCwvTlClTXLKMAAAARVWhCo6TJ0/W3LlzNXv2bB04cECTJ0/WlClTNGvWLKvOlClTNHPmTM2bN09bt25V8eLFFRMTowsXLlh1evfurf379ys2NlYrV67Uxo0bNXDgQGt6amqqoqOjValSJe3cuVNTp07V2LFjNX/+fJcuLwAAQFHiUdAduNyWLVvUuXNndejQQZJUuXJl/fe//9W2bdsk/XW2cfr06XrhhRfUuXNnSdK7776r4OBgLV++XD179tSBAwe0atUqbd++XQ0bNpQkzZo1S+3bt9err76q0NBQLVq0SBcvXtTbb78tLy8v1apVS/Hx8Zo2bZpTwAQAAMD/KVTBsUmTJpo/f76+//573Xbbbdq9e7c2b96sadOmSZKOHDmihIQERUVFWe8JCAhQo0aNFBcXp549eyouLk6BgYFWaJSkqKgoubu7a+vWrbr33nsVFxenFi1ayMvLy6oTExOjyZMn6+TJkypVqlSWvqWlpSktLc16nZqaKklKT09Xenp6niy/o528as/VvIuZa1cqJLzdjdN/i5KitH0U9W26KGGsXYNxdp38GmvW3Y0pVMHx2WefVWpqqqpXr65ixYopIyNDL7/8snr37i1JSkhIkCQFBwc7vS84ONialpCQoLJlyzpN9/DwUFBQkFOd8PDwLG04pmUXHCdOnKhx48ZlKV+zZo38/PyuZ3FzFBsbm6ftucqUOwu6B7k3oWFmQXch1z7//POC7kKuFdVtuihirF2DcXadvB7rc+fO5Wl7N5tCFRw//PBDLVq0SIsXL7YuHw8bNkyhoaHq27dvgfZt1KhRGj58uPU6NTVVYWFhio6Olr+/f57MIz09XbGxsWrTpo08PT3zpE1Xqj12dUF3wTZvd6MJDTM1eoe70jLdCro7ubJvbExBd8G2or5NFyWMtWswzq6TX2PtuGKI61OoguOIESP07LPPqmfPnpKkOnXq6JdfftHEiRPVt29fhYSESJISExNVrlw5632JiYmqX7++JCkkJERJSUlO7V66dEnJycnW+0NCQpSYmOhUx/HaUedK3t7e8vb2zlLu6emZ5zuP/GjTFdIyilYAk6S0TLci1++iuG0U1W26KGKsXYNxdp28HmvW240pVL+qPnfunNzdnbtUrFgxZWb+dTkxPDxcISEhWrdunTU9NTVVW7duVWRkpCQpMjJSKSkp2rlzp1Vn/fr1yszMVKNGjaw6GzdudLrPITY2VtWqVcv2MjUAAAAKWXDs1KmTXn75ZX322Wf6+eef9cknn2jatGm69957JUlubm4aNmyYXnrpJa1YsUJ79+5Vnz59FBoaqi5dukiSatSoobZt2+rRRx/Vtm3b9PXXX2vIkCHq2bOnQkNDJUm9evWSl5eX+vfvr/379+uDDz7QjBkznC5FAwAAwFmhulQ9a9YsjR49WoMGDVJSUpJCQ0P1z3/+U2PGjLHqjBw5UmfPntXAgQOVkpKiZs2aadWqVfLx8bHqLFq0SEOGDFHr1q3l7u6url27aubMmdb0gIAArVmzRoMHD1ZERITKlCmjMWPG8CgeAACAqyhUwbFkyZKaPn26pk+fnmMdNzc3jR8/XuPHj8+xTlBQkBYvXnzVedWtW1ebNm263q4CAADcdArVpWoAAAAUXgRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhS6ILjsWPH9OCDD6p06dLy9fVVnTp1tGPHDmu6MUZjxoxRuXLl5Ovrq6ioKB0+fNipjeTkZPXu3Vv+/v4KDAxU//79debMGac6e/bsUfPmzeXj46OwsDBNmTLFJcsHAABQVBWq4Hjy5Ek1bdpUnp6e+uKLL/Tdd9/ptddeU6lSpaw6U6ZM0cyZMzVv3jxt3bpVxYsXV0xMjC5cuGDV6d27t/bv36/Y2FitXLlSGzdu1MCBA63pqampio6OVqVKlbRz505NnTpVY8eO1fz58126vAAAAEWJR0F34HKTJ09WWFiYFixYYJWFh4db/2+M0fTp0/XCCy+oc+fOkqR3331XwcHBWr58uXr27KkDBw5o1apV2r59uxo2bChJmjVrltq3b69XX31VoaGhWrRokS5evKi3335bXl5eqlWrluLj4zVt2jSngAkAAID/U6iC44oVKxQTE6Pu3bvrq6++Uvny5TVo0CA9+uijkqQjR44oISFBUVFR1nsCAgLUqFEjxcXFqWfPnoqLi1NgYKAVGiUpKipK7u7u2rp1q+69917FxcWpRYsW8vLysurExMRo8uTJOnnypNMZToe0tDSlpaVZr1NTUyVJ6enpSk9Pz5Pld7STV+25mncxU9BdsM3b3Tj9tygpSttHUd+mixLG2jUYZ9fJr7Fm3d2YQhUcf/rpJ82dO1fDhw/Xc889p+3bt+uJJ56Ql5eX+vbtq4SEBElScHCw0/uCg4OtaQkJCSpbtqzTdA8PDwUFBTnVufxM5uVtJiQkZBscJ06cqHHjxmUpX7Nmjfz8/K5zibMXGxubp+25ypQ7C7oHuTehYWZBdyHXPv/884LuQq4V1W26KGKsXYNxdp28Hutz587laXs3m0IVHDMzM9WwYUO98sorkqQGDRpo3759mjdvnvr27VugfRs1apSGDx9uvU5NTVVYWJiio6Pl7++fJ/NIT09XbGys2rRpI09Pzzxp05Vqj11d0F2wzdvdaELDTI3e4a60TLeC7k6u7BsbU9BdsK2ob9NFCWPtGoyz6+TXWDuuGOL6FKrgWK5cOdWsWdOprEaNGvroo48kSSEhIZKkxMRElStXzqqTmJio+vXrW3WSkpKc2rh06ZKSk5Ot94eEhCgxMdGpjuO1o86VvL295e3tnaXc09Mzz3ce+dGmK6RlFK0AJklpmW5Frt9Fcdsoqtt0UcRYuwbj7Dp5PdastxtTqH5V3bRpUx06dMip7Pvvv1elSpUk/fVDmZCQEK1bt86anpqaqq1btyoyMlKSFBkZqZSUFO3cudOqs379emVmZqpRo0ZWnY0bNzrd5xAbG6tq1aple5kaAAAAhSw4Pvnkk/rmm2/0yiuv6IcfftDixYs1f/58DR48WJLk5uamYcOG6aWXXtKKFSu0d+9e9enTR6GhoerSpYukv85Qtm3bVo8++qi2bdumr7/+WkOGDFHPnj0VGhoqSerVq5e8vLzUv39/7d+/Xx988IFmzJjhdCkaAAAAzgrVpeo77rhDn3zyiUaNGqXx48crPDxc06dPV+/eva06I0eO1NmzZzVw4EClpKSoWbNmWrVqlXx8fKw6ixYt0pAhQ9S6dWu5u7ura9eumjlzpjU9ICBAa9as0eDBgxUREaEyZcpozJgxPIoHAADgKgpVcJSkjh07qmPHjjlOd3Nz0/jx4zV+/Pgc6wQFBWnx4sVXnU/dunW1adOm6+4nAADAzaZQXaoGAABA4UVwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2EJwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAEAACALQRHAAAA2OJR0B1A9io/+1lBdwEAAMAJZxwBAABgC8ERAAAAthTqS9WTJk3SqFGjNHToUE2fPl2SdOHCBT311FNasmSJ0tLSFBMTozfeeEPBwcHW+44eParHH39cGzZsUIkSJdS3b19NnDhRHh7/t7hffvmlhg8frv379yssLEwvvPCCHn74YRcvIZB7Rek2Bu9iRlPuLOheAADySqE947h9+3a9+eabqlu3rlP5k08+qf/9739aunSpvvrqKx0/flz33XefNT0jI0MdOnTQxYsXtWXLFr3zzjtauHChxowZY9U5cuSIOnTooLvuukvx8fEaNmyYBgwYoNWrV7ts+QAAAIqaQhkcz5w5o969e+vf//63SpUqZZWfOnVK//nPfzRt2jTdfffdioiI0IIFC7RlyxZ98803kqQ1a9bou+++0/vvv6/69eurXbt2mjBhgubMmaOLFy9KkubNm6fw8HC99tprqlGjhoYMGaJu3brp9ddfL5DlBQAAKAoK5aXqwYMHq0OHDoqKitJLL71kle/cuVPp6emKioqyyqpXr66KFSsqLi5OjRs3VlxcnOrUqeN06TomJkaPP/649u/frwYNGiguLs6pDUedYcOG5dintLQ0paWlWa9TU1MlSenp6UpPT7/RRbbacvzXu5jJkzaRPW934/Rf5A/H+ObVZwQ5u3z/gfzDOLtOfo016+7GFLrguGTJEn377bfavn17lmkJCQny8vJSYGCgU3lwcLASEhKsOpeHRsd0x7Sr1UlNTdX58+fl6+ubZd4TJ07UuHHjspSvWbNGfn5+9hfQhtjYWO4Lc5EJDTMLugs3hdjY2ILuwk2DsXYNxtl18nqsz507l6ft3WwKVXD89ddfNXToUMXGxsrHx6egu+Nk1KhRGj58uPU6NTVVYWFhio6Olr+/f57MIz09XbGxsWrTpo0avLw+T9pE9rzdjSY0zNToHe5Ky3Qr6O78bTnGuU2bNvL09Czo7vytXb7/YKzzD+PsOvk11o4rhrg+hSo47ty5U0lJSbr99tutsoyMDG3cuFGzZ8/W6tWrdfHiRaWkpDiddUxMTFRISIgkKSQkRNu2bXNqNzEx0Zrm+K+j7PI6/v7+2Z5tlCRvb295e3tnKff09MzznYenp6fSMggzrpCW6cZYu0B+fE6QPcbaNRhn18nrsWa93ZhC9eOY1q1ba+/evYqPj7f+NWzYUL1797b+39PTU+vWrbPec+jQIR09elSRkZGSpMjISO3du1dJSUlWndjYWPn7+6tmzZpWncvbcNRxtAEAAICsCtUZx5IlS6p27dpOZcWLF1fp0qWt8v79+2v48OEKCgqSv7+//vWvfykyMlKNGzeWJEVHR6tmzZp66KGHNGXKFCUkJOiFF17Q4MGDrTOGjz32mGbPnq2RI0fqkUce0fr16/Xhhx/qs8+KzvPxAAAAXK1QBUc7Xn/9dbm7u6tr165ODwB3KFasmFauXKnHH39ckZGRKl68uPr27avx48dbdcLDw/XZZ5/pySef1IwZM1ShQgW99dZbiomJKYhFAgAAKBIKfXD88ssvnV77+Phozpw5mjNnTo7vqVSpkj7//POrttuqVSvt2rUrL7oIAABwUyhU9zgCAACg8CI4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMCWQhUcJ06cqDvuuEMlS5ZU2bJl1aVLFx06dMipzoULFzR48GCVLl1aJUqUUNeuXZWYmOhU5+jRo+rQoYP8/PxUtmxZjRgxQpcuXXKq8+WXX+r222+Xt7e3qlatqoULF+b34gEAABRphSo4fvXVVxo8eLC++eYbxcbGKj09XdHR0Tp79qxV58knn9T//vc/LV26VF999ZWOHz+u++67z5qekZGhDh066OLFi9qyZYveeecdLVy4UGPGjLHqHDlyRB06dNBdd92l+Ph4DRs2TAMGDNDq1atdurwAAABFiUdBd+Byq1atcnq9cOFClS1bVjt37lSLFi106tQp/ec//9HixYt19913S5IWLFigGjVq6JtvvlHjxo21Zs0afffdd1q7dq2Cg4NVv359TZgwQc8884zGjh0rLy8vzZs3T+Hh4XrttdckSTVq1NDmzZv1+uuvKyYmJtu+paWlKS0tzXqdmpoqSUpPT1d6enqeLL+jnfT0dHkXM3nSJrLn7W6c/ov84RjfvPqMIGeX7z+Qfxhn18mvsWbd3ZhCFRyvdOrUKUlSUFCQJGnnzp1KT09XVFSUVad69eqqWLGi4uLi1LhxY8XFxalOnToKDg626sTExOjxxx/X/v371aBBA8XFxTm14agzbNiwHPsyceJEjRs3Lkv5mjVr5OfndyOLmUVsbKym3JmnTSIHExpmFnQXbgqxsbEF3YWbBmPtGoyz6+T1WJ87dy5P27vZFNrgmJmZqWHDhqlp06aqXbu2JCkhIUFeXl4KDAx0qhscHKyEhASrzuWh0THdMe1qdVJTU3X+/Hn5+vpm6c+oUaM0fPhw63VqaqrCwsIUHR0tf3//G1vY/y89PV2xsbFq06aNGry8Pk/aRPa83Y0mNMzU6B3uSst0K+ju/G05xrlNmzby9PQs6O78rV2+/2Cs8w/j7Dr5NdaOK4a4PoU2OA4ePFj79u3T5s2bC7orkiRvb295e3tnKff09MzznYenp6fSMggzrpCW6cZYu0B+fE6QPcbaNRhn18nrsWa93ZhC9eMYhyFDhmjlypXasGGDKlSoYJWHhITo4sWLSklJcaqfmJiokJAQq86Vv7J2vL5WHX9//2zPNgIAAKCQBUdjjIYMGaJPPvlE69evV3h4uNP0iIgIeXp6at26dVbZoUOHdPToUUVGRkqSIiMjtXfvXiUlJVl1YmNj5e/vr5o1a1p1Lm/DUcfRBgAAALIqVJeqBw8erMWLF+vTTz9VyZIlrXsSAwIC5Ovrq4CAAPXv31/Dhw9XUFCQ/P399a9//UuRkZFq3LixJCk6Olo1a9bUQw89pClTpighIUEvvPCCBg8ebF1qfuyxxzR79myNHDlSjzzyiNavX68PP/xQn332WYEtOwAAQGFXqM44zp07V6dOnVKrVq1Urlw5698HH3xg1Xn99dfVsWNHde3aVS1atFBISIg+/vhja3qxYsW0cuVKFStWTJGRkXrwwQfVp08fjR8/3qoTHh6uzz77TLGxsapXr55ee+01vfXWWzk+igcAAACF7IyjMdd+pp6Pj4/mzJmjOXPm5FinUqVK+vzzz6/aTqtWrbRr165c9xEAAOBmVajOOAIAAKDwIjgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWgiMAAABsITgCAADAFoIjAAAAbCE4AgAAwBaCIwAAAGwhOAIAAMAWj4LuAIC/v9pjVystw62gu5ErP0/qUNBdAIBChzOOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwheAIAAAAWwiOAAAAsIXgCAAAAFsIjgAAALCF4AgAAABbCI4AAACwxaOgOwAAhVHlZz8r6C7kincxoyl3FnQvAPzdccYRAAAAthAcAQAAYMtNHxznzJmjypUry8fHR40aNdK2bdsKuksAAACF0k0dHD/44AMNHz5cL774or799lvVq1dPMTExSkpKKuiuAQAAFDo3dXCcNm2aHn30UfXr1081a9bUvHnz5Ofnp7fffruguwYAAFDo3LS/qr548aJ27typUaNGWWXu7u6KiopSXFxclvppaWlKS0uzXp86dUqSlJycrPT09DzpU3p6us6dO6cTJ07I49LZPGkT2fPINDp3LlMe6e7KyHQr6O78bTHOruMY6/rPf6y0IjTWW0e1Lugu5Mrl+2lPT8+C7s7fWn6N9enTpyVJxpg8a/NmctMGxz///FMZGRkKDg52Kg8ODtbBgwez1J84caLGjRuXpTw8PDzf+oj81augO3CTYJxdpyiOdZnXCroHuFmdPn1aAQEBBd2NIuemDY65NWrUKA0fPtx6nZmZqeTkZJUuXVpubnnz7T41NVVhYWH69ddf5e/vnydtInuMtWswzq7DWLsG4+w6+TXWxhidPn1aoaGhedbmzeSmDY5lypRRsWLFlJiY6FSemJiokJCQLPW9vb3l7e3tVBYYGJgvffP392eH5CKMtWswzq7DWLsG4+w6+THWnGm8fjftj2O8vLwUERGhdevWWWWZmZlat26dIiMjC7BnAAAAhdNNe8ZRkoYPH66+ffuqYcOGuvPOOzV9+nSdPXtW/fr1K+iuAQAAFDo3dXC8//779ccff2jMmDFKSEhQ/fr1tWrVqiw/mHEVb29vvfjii1kuiSPvMdauwTi7DmPtGoyz6zDWhZOb4ffoAAAAsOGmvccRAAAAuUNwBAAAgC0ERwAAANhCcAQAAIAtBEcAAADYQnAsRObMmaPKlSvLx8dHjRo10rZt2wq6S0XKxIkTdccdd6hkyZIqW7asunTpokOHDjnVuXDhggYPHqzSpUurRIkS6tq1a5a/HnT06FF16NBBfn5+Klu2rEaMGKFLly65clGKlEmTJsnNzU3Dhg2zyhjnvHPs2DE9+OCDKl26tHx9fVWnTh3t2LHDmm6M0ZgxY1SuXDn5+voqKipKhw8fdmojOTlZvXv3lr+/vwIDA9W/f3+dOXPG1YtSaGVkZGj06NEKDw+Xr6+vqlSpogkTJujyh44wztdn48aN6tSpk0JDQ+Xm5qbly5c7Tc+rcd2zZ4+aN28uHx8fhYWFacqUKfm9aDcvg0JhyZIlxsvLy7z99ttm//795tFHHzWBgYEmMTGxoLtWZMTExJgFCxaYffv2mfj4eNO+fXtTsWJFc+bMGavOY489ZsLCwsy6devMjh07TOPGjU2TJk2s6ZcuXTK1a9c2UVFRZteuXebzzz83ZcqUMaNGjSqIRSr0tm3bZipXrmzq1q1rhg4dapUzznkjOTnZVKpUyTz88MNm69at5qeffjKrV682P/zwg1Vn0qRJJiAgwCxfvtzs3r3b3HPPPSY8PNycP3/eqtO2bVtTr149880335hNmzaZqlWrmgceeKAgFqlQevnll03p0qXNypUrzZEjR8zSpUtNiRIlzIwZM6w6jPP1+fzzz83zzz9vPv74YyPJfPLJJ07T82JcT506ZYKDg03v3r3Nvn37zH//+1/j6+tr3nzzTVct5k2F4FhI3HnnnWbw4MHW64yMDBMaGmomTpxYgL0q2pKSkowk89VXXxljjElJSTGenp5m6dKlVp0DBw4YSSYuLs4Y89dOzt3d3SQkJFh15s6da/z9/U1aWpprF6CQO336tLn11ltNbGysadmypRUcGee888wzz5hmzZrlOD0zM9OEhISYqVOnWmUpKSnG29vb/Pe//zXGGPPdd98ZSWb79u1WnS+++MK4ubmZY8eO5V/ni5AOHTqYRx55xKnsvvvuM7179zbGMM555crgmFfj+sYbb5hSpUo57TueeeYZU61atXxeopsTl6oLgYsXL2rnzp2Kioqyytzd3RUVFaW4uLgC7FnRdurUKUlSUFCQJGnnzp1KT093Gufq1aurYsWK1jjHxcWpTp06Tn89KCYmRqmpqdq/f78Le1/4DR48WB06dHAaT4lxzksrVqxQw4YN1b17d5UtW1YNGjTQv//9b2v6kSNHlJCQ4DTWAQEBatSokdNYBwYGqmHDhladqKgoubu7a+vWra5bmEKsSZMmWrdunb7//ntJ0u7du7V582a1a9dOEuOcX/JqXOPi4tSiRQt5eXlZdWJiYnTo0CGdPHnSRUtz87ip/+RgYfHnn38qIyMjy586DA4O1sGDBwuoV0VbZmamhg0bpqZNm6p27dqSpISEBHl5eSkwMNCpbnBwsBISEqw62a0HxzT8ZcmSJfr222+1ffv2LNMY57zz008/ae7cuRo+fLiee+45bd++XU888YS8vLzUt29fa6yyG8vLx7ps2bJO0z08PBQUFMRY/3/PPvusUlNTVb16dRUrVkwZGRl6+eWX1bt3b0linPNJXo1rQkKCwsPDs7ThmFaqVKl86f/NiuCIv6XBgwdr37592rx5c0F35W/n119/1dChQxUbGysfH5+C7s7fWmZmpho2bKhXXnlFktSgQQPt27dP8+bNU9++fQu4d38fH374oRYtWqTFixerVq1aio+P17BhwxQaGso4A1fgUnUhUKZMGRUrVizLr04TExMVEhJSQL0quoYMGaKVK1dqw4YNqlChglUeEhKiixcvKiUlxan+5eMcEhKS7XpwTMNfl6KTkpJ0++23y8PDQx4eHvrqq680c+ZMeXh4KDg4mHHOI+XKlVPNmjWdymrUqKGjR49K+r+xutq+IyQkRElJSU7TL126pOTkZMb6/xsxYoSeffZZ9ezZU3Xq1NFDDz2kJ598UhMnTpTEOOeXvBpX9ieuRXAsBLy8vBQREaF169ZZZZmZmVq3bp0iIyMLsGdFizFGQ4YM0SeffKL169dnuXQREREhT09Pp3E+dOiQjh49ao1zZGSk9u7d67Sjio2Nlb+/f5YD+M2qdevW2rt3r+Lj461/DRs2VO/eva3/Z5zzRtOmTbM8Uur7779XpUqVJEnh4eEKCQlxGuvU1FRt3brVaaxTUlK0c+dOq8769euVmZmpRo0auWApCr9z587J3d35cFisWDFlZmZKYpzzS16Na2RkpDZu3Kj09HSrTmxsrKpVq8Zl6vxQ0L/OwV+WLFlivL29zcKFC813331nBg4caAIDA51+dYqre/zxx01AQID58ssvze+//279O3funFXnscceMxUrVjTr1683O3bsMJGRkSYyMtKa7nhMTHR0tImPjzerVq0yt9xyC4+JuYbLf1VtDOOcV7Zt22Y8PDzMyy+/bA4fPmwWLVpk/Pz8zPvvv2/VmTRpkgkMDDSffvqp2bNnj+ncuXO2jzNp0KCB2bp1q9m8ebO59dZbb/rHxFyub9++pnz58tbjeD7++GNTpkwZM3LkSKsO43x9Tp8+bXbt2mV27dplJJlp06aZXbt2mV9++cUYkzfjmpKSYoKDg81DDz1k9u3bZ5YsWWL8/Px4HE8+ITgWIrNmzTIVK1Y0Xl5e5s477zTffPNNQXepSJGU7b8FCxZYdc6fP28GDRpkSpUqZfz8/My9995rfv/9d6d2fv75Z9OuXTvj6+trypQpY5566imTnp7u4qUpWq4Mjoxz3vnf//5nateubby9vU316tXN/PnznaZnZmaa0aNHm+DgYOPt7W1at25tDh065FTnxIkT5oEHHjAlSpQw/v7+pl+/fub06dOuXIxCLTU11QwdOtRUrFjR+Pj4mH/84x/m+eefd3q8C+N8fTZs2JDtfrlv377GmLwb1927d5tmzZoZb29vU758eTNp0iRXLeJNx82Yyx6NDwAAAOSAexwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGALwREAAAC2EBwBAABgC8ERAAAAthAcAQAAYAvBEQAAALYQHAEAAGDL/wM6tV3zQ96S4AAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "