Spaces:
Sleeping
Sleeping
added 1on1 model results to "Human vs AI Source Models"
Browse files- .gitignore +6 -0
- analysis.py +0 -2
- app.py +12 -7
- predictors.py +75 -12
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/analysis.cpython-311.pyc
|
2 |
+
__pycache__/app.cpython-311.pyc
|
3 |
+
__pycache__/explainability.cpython-311.pyc
|
4 |
+
__pycache__/plagiarism.cpython-311.pyc
|
5 |
+
__pycache__/predictors.cpython-311.pyc
|
6 |
+
__pycache__/utils.cpython-311.pyc
|
analysis.py
CHANGED
@@ -22,12 +22,10 @@ import yaml
|
|
22 |
import nltk
|
23 |
import os
|
24 |
from explainability import *
|
25 |
-
from dotenv import load_dotenv
|
26 |
import subprocess
|
27 |
|
28 |
nltk.download("punkt")
|
29 |
nltk.download("stopwords")
|
30 |
-
load_dotenv()
|
31 |
with open("config.yaml", "r") as file:
|
32 |
params = yaml.safe_load(file)
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
22 |
import nltk
|
23 |
import os
|
24 |
from explainability import *
|
|
|
25 |
import subprocess
|
26 |
|
27 |
nltk.download("punkt")
|
28 |
nltk.download("stopwords")
|
|
|
29 |
with open("config.yaml", "r") as file:
|
30 |
params = yaml.safe_load(file)
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from datetime import date
|
4 |
-
from predictors import predict_bc_scores, predict_mc_scores
|
5 |
from analysis import depth_analysis
|
6 |
from predictors import predict_quillbot
|
7 |
from plagiarism import plagiarism_check, build_date
|
@@ -12,11 +12,12 @@ np.set_printoptions(suppress=True)
|
|
12 |
|
13 |
def ai_generated_test(option, input):
|
14 |
if option == "Human vs AI":
|
15 |
-
return predict_bc_scores(input), None
|
16 |
else:
|
17 |
return (
|
18 |
predict_bc_scores(input),
|
19 |
predict_mc_scores(input),
|
|
|
20 |
)
|
21 |
|
22 |
|
@@ -49,11 +50,13 @@ def main(
|
|
49 |
depth_analysis_plot = depth_analysis(input)
|
50 |
bc_score = predict_bc_scores(input)
|
51 |
mc_score = predict_mc_scores(input)
|
|
|
52 |
quilscore = predict_quillbot(input)
|
53 |
|
54 |
return (
|
55 |
bc_score,
|
56 |
mc_score,
|
|
|
57 |
formatted_tokens,
|
58 |
depth_analysis_plot,
|
59 |
quilscore,
|
@@ -147,6 +150,8 @@ with gr.Blocks() as demo:
|
|
147 |
bcLabel = gr.Label(label="Source")
|
148 |
with gr.Column():
|
149 |
mcLabel = gr.Label(label="Creator")
|
|
|
|
|
150 |
with gr.Row():
|
151 |
QLabel = gr.Label(label="Humanized")
|
152 |
with gr.Group():
|
@@ -213,6 +218,7 @@ with gr.Blocks() as demo:
|
|
213 |
outputs=[
|
214 |
bcLabel,
|
215 |
mcLabel,
|
|
|
216 |
sentenceBreakdown,
|
217 |
writing_analysis_plot,
|
218 |
QLabel,
|
@@ -223,10 +229,7 @@ with gr.Blocks() as demo:
|
|
223 |
only_ai_btn.click(
|
224 |
fn=ai_generated_test,
|
225 |
inputs=[ai_option, input_text],
|
226 |
-
outputs=[
|
227 |
-
bcLabel,
|
228 |
-
mcLabel,
|
229 |
-
],
|
230 |
api_name="ai_check",
|
231 |
)
|
232 |
|
@@ -266,4 +269,6 @@ with gr.Blocks() as demo:
|
|
266 |
date_from = ""
|
267 |
date_to = ""
|
268 |
|
269 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from datetime import date
|
4 |
+
from predictors import predict_bc_scores, predict_mc_scores, predict_1on1_scores
|
5 |
from analysis import depth_analysis
|
6 |
from predictors import predict_quillbot
|
7 |
from plagiarism import plagiarism_check, build_date
|
|
|
12 |
|
13 |
def ai_generated_test(option, input):
|
14 |
if option == "Human vs AI":
|
15 |
+
return predict_bc_scores(input), None, None
|
16 |
else:
|
17 |
return (
|
18 |
predict_bc_scores(input),
|
19 |
predict_mc_scores(input),
|
20 |
+
predict_1on1_scores(input),
|
21 |
)
|
22 |
|
23 |
|
|
|
50 |
depth_analysis_plot = depth_analysis(input)
|
51 |
bc_score = predict_bc_scores(input)
|
52 |
mc_score = predict_mc_scores(input)
|
53 |
+
mc_1on1_score = predict_1on1_scores(input)
|
54 |
quilscore = predict_quillbot(input)
|
55 |
|
56 |
return (
|
57 |
bc_score,
|
58 |
mc_score,
|
59 |
+
mc_1on1_score,
|
60 |
formatted_tokens,
|
61 |
depth_analysis_plot,
|
62 |
quilscore,
|
|
|
150 |
bcLabel = gr.Label(label="Source")
|
151 |
with gr.Column():
|
152 |
mcLabel = gr.Label(label="Creator")
|
153 |
+
with gr.Column():
|
154 |
+
mc1on1Label = gr.Label(label="Creator(1 on 1 Approach)")
|
155 |
with gr.Row():
|
156 |
QLabel = gr.Label(label="Humanized")
|
157 |
with gr.Group():
|
|
|
218 |
outputs=[
|
219 |
bcLabel,
|
220 |
mcLabel,
|
221 |
+
mc1on1Label,
|
222 |
sentenceBreakdown,
|
223 |
writing_analysis_plot,
|
224 |
QLabel,
|
|
|
229 |
only_ai_btn.click(
|
230 |
fn=ai_generated_test,
|
231 |
inputs=[ai_option, input_text],
|
232 |
+
outputs=[bcLabel, mcLabel, mc1on1Label],
|
|
|
|
|
|
|
233 |
api_name="ai_check",
|
234 |
)
|
235 |
|
|
|
269 |
date_from = ""
|
270 |
date_to = ""
|
271 |
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
demo.launch(share=True, auth=("polygraf-admin", "test@aisd"))
|
predictors.py
CHANGED
@@ -19,19 +19,19 @@ from scipy.special import softmax
|
|
19 |
import yaml
|
20 |
import os
|
21 |
from utils import *
|
22 |
-
from dotenv import load_dotenv
|
23 |
|
24 |
with open("config.yaml", "r") as file:
|
25 |
params = yaml.safe_load(file)
|
26 |
nltk.download("punkt")
|
27 |
nltk.download("stopwords")
|
28 |
-
load_dotenv()
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
|
31 |
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
|
32 |
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
|
|
|
33 |
quillbot_labels = params["QUILLBOT_LABELS"]
|
34 |
mc_label_map = params["MC_OUTPUT_LABELS"]
|
|
|
35 |
mc_token_size = int(params["MC_TOKEN_SIZE"])
|
36 |
bc_token_size = int(params["BC_TOKEN_SIZE"])
|
37 |
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
|
@@ -46,6 +46,13 @@ quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
|
|
46 |
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
|
47 |
text_quillbot_model_path
|
48 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
def split_text_allow_complete_sentences_nltk(
|
@@ -234,13 +241,69 @@ def predict_bc_scores(input):
|
|
234 |
return bc_score
|
235 |
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
import yaml
|
20 |
import os
|
21 |
from utils import *
|
|
|
22 |
|
23 |
with open("config.yaml", "r") as file:
|
24 |
params = yaml.safe_load(file)
|
25 |
nltk.download("punkt")
|
26 |
nltk.download("stopwords")
|
|
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
|
29 |
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
|
30 |
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
|
31 |
+
text_1on1_models = params["TEXT_1ON1_MODEL"]
|
32 |
quillbot_labels = params["QUILLBOT_LABELS"]
|
33 |
mc_label_map = params["MC_OUTPUT_LABELS"]
|
34 |
+
text_1on1_label_map = params["1ON1_OUTPUT_LABELS"]
|
35 |
mc_token_size = int(params["MC_TOKEN_SIZE"])
|
36 |
bc_token_size = int(params["BC_TOKEN_SIZE"])
|
37 |
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
|
|
|
46 |
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
|
47 |
text_quillbot_model_path
|
48 |
).to(device)
|
49 |
+
tokenizers_1on1 = {}
|
50 |
+
models_1on1 = {}
|
51 |
+
for model in text_1on1_models:
|
52 |
+
tokenizers_1on1[model] = AutoTokenizer.from_pretrained(model)
|
53 |
+
models_1on1[model] = AutoModelForSequenceClassification.from_pretrained(
|
54 |
+
model
|
55 |
+
).to(device)
|
56 |
|
57 |
|
58 |
def split_text_allow_complete_sentences_nltk(
|
|
|
241 |
return bc_score
|
242 |
|
243 |
|
244 |
+
def predict_1on1(model, tokenizer, text):
|
245 |
+
with torch.no_grad():
|
246 |
+
model.eval()
|
247 |
+
tokens = tokenizer(
|
248 |
+
text,
|
249 |
+
padding="max_length",
|
250 |
+
truncation=True,
|
251 |
+
return_tensors="pt",
|
252 |
+
max_length=mc_token_size,
|
253 |
+
).to(device)
|
254 |
+
output = model(**tokens)
|
255 |
+
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
256 |
+
return output_norm
|
257 |
+
|
258 |
+
|
259 |
+
def predict_1on1_combined(input):
|
260 |
+
predictions = []
|
261 |
+
for i, model in enumerate(text_1on1_models):
|
262 |
+
predictions.append(
|
263 |
+
predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
|
264 |
+
)
|
265 |
+
return predictions
|
266 |
+
|
267 |
+
|
268 |
+
def predict_1on1_scores(input):
|
269 |
+
# BC SCORE
|
270 |
+
bc_scores = []
|
271 |
+
samples_len_bc = len(
|
272 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
273 |
+
)
|
274 |
+
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
275 |
+
for i in range(samples_len_bc):
|
276 |
+
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
277 |
+
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
|
278 |
+
bc_scores.append(bc_score)
|
279 |
+
bc_scores_array = np.array(bc_scores)
|
280 |
+
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
281 |
+
bc_score_list = average_bc_scores.tolist()
|
282 |
+
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
283 |
+
|
284 |
+
# MC SCORE
|
285 |
+
mc_scores = []
|
286 |
+
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
287 |
+
samples_len_mc = len(
|
288 |
+
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
289 |
+
)
|
290 |
+
for i in range(samples_len_mc):
|
291 |
+
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
292 |
+
mc_score = predict_1on1_combined(cleaned_text_mc)
|
293 |
+
mc_scores.append(mc_score)
|
294 |
+
mc_scores_array = np.array(mc_scores)
|
295 |
+
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
296 |
+
normalized_mc_scores = average_mc_scores / np.sum(average_mc_scores)
|
297 |
+
mc_score_list = normalized_mc_scores.tolist()
|
298 |
+
mc_score = {}
|
299 |
+
for score, label in zip(mc_score_list, text_1on1_label_map):
|
300 |
+
mc_score[label.upper()] = score
|
301 |
+
|
302 |
+
print(mc_score)
|
303 |
+
sum_prob = 1 - bc_score["HUMAN"]
|
304 |
+
for key, value in mc_score.items():
|
305 |
+
mc_score[key] = value * sum_prob
|
306 |
+
if sum_prob < 0.01:
|
307 |
+
mc_score = {}
|
308 |
+
|
309 |
+
return mc_score
|