import time import gradio as gr import os import torch import numpy as np from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi from label_dicts import MANIFESTO_LABEL_NAMES class RuntimeMeasure: def __init__(self, msg): self.msg = msg def __enter__(self): self.start_time = time.time() return self def __exit__(self, exc_type, exc_value, traceback): end_time = time.time() runtime = end_time - self.start_time gr.Info(f"{self.msg}: {runtime} seconds") def m(msg): return RuntimeMeasure(msg) HF_TOKEN = os.environ["hf_read"] languages = [ "Armenian", "Bulgarian", "Croatian", "Czech", "Danish", "Dutch", "English", "Estonian", "Finnish", "French", "Georgian", "German", "Greek", "Hebrew", "Hungarian", "Icelandic", "Italian", "Japanese", "Korean", "Latvian", "Lithuanian", "Norwegian", "Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Slovak", "Slovenian", "Spanish", "Swedish", "Turkish" ] def build_huggingface_path(language: str): return "poltextlab/xlm-roberta-large-manifesto" def predict(text, model_id, tokenizer_id): gr.Info("\n".join(os.listdir("/data/"))) device = torch.device("cpu") with m("Loading model"): model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN) with m("Loading tokenizer"): tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) with m("Tokenizing"): inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) with m("model.eval()"): model.eval() with m("Inference"): with torch.no_grad(): logits = model(**inputs).logits with m("Softmax"): probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() with m("Output formatting"): output_pred = {f"[{model.config.id2label[i]}] {MANIFESTO_LABEL_NAMES[int(model.config.id2label[i])]}": probs[i] for i in np.argsort(probs)[::-1]} output_info = f'
Prediction was made using the {model_id} model.
' return output_pred, output_info def predict_cap(text, language): with m("WHOLE PROCESS"): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" prediction = predict(text, model_id, tokenizer_id) return prediction demo = gr.Interface( fn=predict_cap, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language")], outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])