import nodes import torch import comfy.model_management import comfy.utils class EmptyCosmosLatentVideo: @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} RETURN_TYPES = ("LATENT",) FUNCTION = "generate" CATEGORY = "latent/video" def generate(self, width, height, length, batch_size=1): latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) return ({"samples": latent}, ) def vae_encode_with_padding(vae, image, width, height, length, padding=0): pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) pixel_len = min(pixels.shape[0], length) padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7) padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5 padded_pixels[:pixel_len] = pixels[:pixel_len] latent_len = ((pixel_len - 1) // 8) + 1 latent_temp = vae.encode(padded_pixels) return latent_temp[:, :, :latent_len] class CosmosImageToVideoLatent: @classmethod def INPUT_TYPES(s): return {"required": {"vae": ("VAE", ), "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"start_image": ("IMAGE", ), "end_image": ("IMAGE", ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "encode" CATEGORY = "conditioning/inpaint" def encode(self, vae, width, height, length, batch_size, start_image=None, end_image=None): latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is None and end_image is None: out_latent = {} out_latent["samples"] = latent return (out_latent,) mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) if start_image is not None: latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) latent[:, :, :latent_temp.shape[-3]] = latent_temp mask[:, :, :latent_temp.shape[-3]] *= 0.0 if end_image is not None: latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) latent[:, :, -latent_temp.shape[-3]:] = latent_temp mask[:, :, -latent_temp.shape[-3]:] *= 0.0 out_latent = {} out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) return (out_latent,) NODE_CLASS_MAPPINGS = { "EmptyCosmosLatentVideo": EmptyCosmosLatentVideo, "CosmosImageToVideoLatent": CosmosImageToVideoLatent, }