import torch from PIL import Image from .imagefunc import log, tensor2pil, pil2tensor, image2mask, mask2image from .imagefunc import chop_image, chop_mode, shift_image, expand_mask class DropShadow: def __init__(self): self.NODE_NAME = 'DropShadow' @classmethod def INPUT_TYPES(self): return { "required": { "background_image": ("IMAGE", ), # "layer_image": ("IMAGE",), # "invert_mask": ("BOOLEAN", {"default": True}), # 反转mask "blend_mode": (chop_mode,), # 混合模式 "opacity": ("INT", {"default": 50, "min": 0, "max": 100, "step": 1}), # 透明度 "distance_x": ("INT", {"default": 25, "min": -9999, "max": 9999, "step": 1}), # x_偏移 "distance_y": ("INT", {"default": 25, "min": -9999, "max": 9999, "step": 1}), # y_偏移 "grow": ("INT", {"default": 6, "min": -9999, "max": 9999, "step": 1}), # 扩张 "blur": ("INT", {"default": 18, "min": 0, "max": 100, "step": 1}), # 模糊 "shadow_color": ("STRING", {"default": "#000000"}), # 背景颜色 }, "optional": { "layer_mask": ("MASK",), # } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = 'drop_shadow' CATEGORY = '😺dzNodes/LayerStyle' def drop_shadow(self, background_image, layer_image, invert_mask, blend_mode, opacity, distance_x, distance_y, grow, blur, shadow_color, layer_mask=None ): b_images = [] l_images = [] l_masks = [] ret_images = [] for b in background_image: b_images.append(torch.unsqueeze(b, 0)) for l in layer_image: l_images.append(torch.unsqueeze(l, 0)) m = tensor2pil(l) if m.mode == 'RGBA': l_masks.append(m.split()[-1]) if layer_mask is not None: if layer_mask.dim() == 2: layer_mask = torch.unsqueeze(layer_mask, 0) l_masks = [] for m in layer_mask: if invert_mask: m = 1 - m l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L')) if len(l_masks) == 0: log(f"Error: {self.NODE_NAME} skipped, because the available mask is not found.", message_type='error') return (background_image,) max_batch = max(len(b_images), len(l_images), len(l_masks)) distance_x = -distance_x distance_y = -distance_y shadow_color = Image.new("RGB", tensor2pil(l_images[0]).size, color=shadow_color) for i in range(max_batch): background_image = b_images[i] if i < len(b_images) else b_images[-1] layer_image = l_images[i] if i < len(l_images) else l_images[-1] _mask = l_masks[i] if i < len(l_masks) else l_masks[-1] # preprocess _canvas = tensor2pil(background_image).convert('RGB') _layer = tensor2pil(layer_image) if _mask.size != _layer.size: _mask = Image.new('L', _layer.size, 'white') log(f"Warning: {self.NODE_NAME} mask mismatch, dropped!", message_type='warning') if distance_x != 0 or distance_y != 0: __mask = shift_image(_mask, distance_x, distance_y) # 位移 shadow_mask = expand_mask(image2mask(__mask), grow, blur) #扩张,模糊 # 合成阴影 alpha = tensor2pil(shadow_mask).convert('L') _shadow = chop_image(_canvas, shadow_color, blend_mode, opacity) _canvas.paste(_shadow, mask=alpha) # 合成layer _canvas.paste(_layer, mask=_mask) ret_images.append(pil2tensor(_canvas)) log(f"{self.NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') return (torch.cat(ret_images, dim=0),) NODE_CLASS_MAPPINGS = { "LayerStyle: DropShadow": DropShadow } NODE_DISPLAY_NAME_MAPPINGS = { "LayerStyle: DropShadow": "LayerStyle: DropShadow" }