Spaces:
Runtime error
Runtime error
CVPR_2023_OpenVINO_Anomalib
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +132 -0
- bottle/examples/000.png +0 -0
- bottle/examples/007.png +0 -0
- bottle/examples/010.png +0 -0
- bottle/examples/018.png +0 -0
- bottle/run/weights/lightning/model.ckpt +3 -0
- bottle/run/weights/openvino/metadata.json +52 -0
- bottle/run/weights/openvino/model.bin +3 -0
- bottle/run/weights/openvino/model.mapping +387 -0
- bottle/run/weights/openvino/model.onnx +3 -0
- bottle/run/weights/openvino/model.xml +2703 -0
- cubes/examples/001.jpg +0 -0
- cubes/examples/002.jpg +0 -0
- cubes/examples/003.jpg +0 -0
- cubes/examples/004.jpg +0 -0
- cubes/examples/005.jpg +0 -0
- cubes/examples/006.jpg +0 -0
- cubes/examples/007.jpg +0 -0
- cubes/examples/008.jpg +0 -0
- cubes/run/weights/openvino/metadata.json +52 -0
- cubes/run/weights/openvino/model.bin +3 -0
- cubes/run/weights/openvino/model.mapping +387 -0
- cubes/run/weights/openvino/model.onnx +3 -0
- cubes/run/weights/openvino/model.xml +2703 -0
- grid/examples/001.png +0 -0
- grid/examples/005.png +0 -0
- grid/examples/006.png +0 -0
- grid/examples/007.png +0 -0
- grid/examples/009.png +0 -0
- grid/examples/010.png +0 -0
- grid/run/weights/lightning/model.ckpt +3 -0
- grid/run/weights/openvino/metadata.json +52 -0
- grid/run/weights/openvino/model.bin +3 -0
- grid/run/weights/openvino/model.mapping +387 -0
- grid/run/weights/openvino/model.onnx +3 -0
- grid/run/weights/openvino/model.xml +2703 -0
- pill/examples/001.png +0 -0
- pill/examples/007.png +0 -0
- pill/examples/013.png +0 -0
- pill/examples/014.png +0 -0
- pill/examples/019.png +0 -0
- pill/examples/021.png +0 -0
- pill/examples/022.png +0 -0
- pill/run/weights/lightning/model.ckpt +3 -0
- pill/run/weights/openvino/metadata.json +52 -0
- pill/run/weights/openvino/model.bin +3 -0
- pill/run/weights/openvino/model.mapping +387 -0
- pill/run/weights/openvino/model.onnx +3 -0
- pill/run/weights/openvino/model.xml +2703 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from pathlib import Path
|
6 |
+
import time
|
7 |
+
from anomalib.deploy import OpenVINOInferencer
|
8 |
+
from openvino.runtime import Core
|
9 |
+
# Initialize the Core
|
10 |
+
core = Core()
|
11 |
+
|
12 |
+
# Get the available devices
|
13 |
+
devices = core.available_devices
|
14 |
+
|
15 |
+
inferencer = None
|
16 |
+
|
17 |
+
example_list = [["bottle/examples/000.png", "anomaly_map", "bottle", "CPU"],
|
18 |
+
["pill/examples/010.png", "heat_map", "pill", "CPU"],
|
19 |
+
["zipper/examples/001.png", "pred_mask", "zipper", "CPU"],
|
20 |
+
["grid/examples/005.png", "segmentations", "grid", "CPU"],
|
21 |
+
["cubes/examples/005.jpg", "heat_map", "cubes", "CPU"]]
|
22 |
+
|
23 |
+
def OV_compilemodel(category_choice, device):
|
24 |
+
global inferencer
|
25 |
+
#Get the available models
|
26 |
+
openvino_model_path = Path.cwd() / category_choice / "run" / "weights" / "openvino" / "model.bin"
|
27 |
+
metadata_path = Path.cwd() / category_choice / "run" / "weights" / "openvino" / "metadata.json"
|
28 |
+
|
29 |
+
inferencer = OpenVINOInferencer(
|
30 |
+
path=openvino_model_path, # Path to the OpenVINO IR model.
|
31 |
+
metadata_path=metadata_path, # Path to the metadata file.
|
32 |
+
device=device, # We would like to run it on an Intel CPU.
|
33 |
+
config= {"INFERENCE_PRECISION_HINT": "f16" } if device != "CPU" else {}
|
34 |
+
)
|
35 |
+
|
36 |
+
return inferencer
|
37 |
+
|
38 |
+
def OV_inference(input_img, operation, category_choice, device):
|
39 |
+
|
40 |
+
start_time = time.time()
|
41 |
+
predictions = inferencer.predict(image=input_img)
|
42 |
+
stop_time = time.time()
|
43 |
+
inference_time = stop_time - start_time
|
44 |
+
confidence = predictions.pred_score
|
45 |
+
|
46 |
+
if operation == "original":
|
47 |
+
output_img1 = predictions.image
|
48 |
+
elif operation == "anomaly_map":
|
49 |
+
output_img1 = predictions.anomaly_map
|
50 |
+
elif operation == "heat_map":
|
51 |
+
output_img1 = predictions.heat_map
|
52 |
+
elif operation == "pred_mask":
|
53 |
+
output_img1 = predictions.pred_mask
|
54 |
+
elif operation == "segmentations":
|
55 |
+
output_img1 = predictions.segmentations
|
56 |
+
else:
|
57 |
+
output_img1 = predictions.image
|
58 |
+
return output_img1, round(inference_time*1000), round(confidence*100,2)
|
59 |
+
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown(
|
62 |
+
"""
|
63 |
+
<img align="left" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/7e61a627-d1b0-4ad4-b602-da9b348c0cbe">
|
64 |
+
<img align="right" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/5d6dd038-b40c-441f-ad38-1cf526137de2">
|
65 |
+
|
66 |
+
<h1 align="center"> 🚀 Anomaly detection 🚀 </h1>
|
67 |
+
|
68 |
+
Experience the power of the state-of-the-art anomaly detection with Anomalib-OpenVINO Anomaly detection toolbox. This interactive APP leverages the robust capabilities of Anomalib and OpenVINO.
|
69 |
+
|
70 |
+
All model are FP32 precision, if you select GPU it will automatically change precision to FP16. Using Anomalib you can also quantize your model in INT8 using NNCF.
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
![](https://github.com/openvinotoolkit/anomalib/assets/10940214/ce78346f-4d27-4f99-bea7-75b87e2ac02a)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
|
81 |
+
gr.Markdown("## 1. Select the category over you want to detect anormalities.")
|
82 |
+
category_choice = gr.Radio(["bottle", "grid", "pill", "zipper", "cubes"], label="Choose the category")
|
83 |
+
|
84 |
+
gr.Markdown(
|
85 |
+
"""
|
86 |
+
## 2. Select the Intel device
|
87 |
+
Device Name | CPU | GPU.0 | GPU.1
|
88 |
+
------------- | ------------ |------------- | -------------
|
89 |
+
Intel Device | CPU | Integrated GPU | Discrete GPU
|
90 |
+
|
91 |
+
|
92 |
+
"""
|
93 |
+
)
|
94 |
+
device_choice = gr.Dropdown(devices, label="Choose the device")
|
95 |
+
|
96 |
+
gr.Markdown("## 3. Compile the model")
|
97 |
+
compile_btn = gr.Button("Compile Model")
|
98 |
+
|
99 |
+
gr.Markdown("## 4. Choose the output you want to visualize.")
|
100 |
+
output_choice = gr.Radio(["original", "anomaly_map", "heat_map", "pred_mask", "segmentations"], label="Choose the output")
|
101 |
+
|
102 |
+
gr.Markdown("## 5. Drop the image in the input image box and run the inference")
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
image = gr.Image(type="numpy", label= "Input image")
|
106 |
+
|
107 |
+
|
108 |
+
with gr.Column():
|
109 |
+
output_img = gr.outputs.Image(type="numpy", label="Anomalib Output")
|
110 |
+
|
111 |
+
inference_btn = gr.Button("Run Inference")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
# Create your output components
|
115 |
+
#output_prediction = gr.Textbox(label="Prediction")
|
116 |
+
output_confidence = gr.Textbox(label="Confidence [%]")
|
117 |
+
output_time = gr.Textbox(label="Inference Time [ms]")
|
118 |
+
|
119 |
+
gr.Markdown("Note: Change the image and run the inference again. If you want to change the object you need to recompile the model, that means you need to start from step 1.")
|
120 |
+
gr.Markdown("## Image Examples")
|
121 |
+
|
122 |
+
gr.Examples(
|
123 |
+
examples=example_list,
|
124 |
+
inputs=[image, output_choice, category_choice, device_choice],
|
125 |
+
outputs=[output_img, output_time, output_confidence],
|
126 |
+
fn=OV_inference,
|
127 |
+
)
|
128 |
+
|
129 |
+
compile_btn.click(OV_compilemodel, inputs=[category_choice, device_choice])
|
130 |
+
inference_btn.click(OV_inference, inputs=[image, output_choice], outputs=[output_img, output_time, output_confidence])
|
131 |
+
|
132 |
+
demo.launch(share=True, enable_queue=True)
|
bottle/examples/000.png
ADDED
bottle/examples/007.png
ADDED
bottle/examples/010.png
ADDED
bottle/examples/018.png
ADDED
bottle/run/weights/lightning/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30ef6e09877b0d7be1e0d8e7492f203ffaa33caea9b7009b5dc7137df8220815
|
3 |
+
size 186461500
|
bottle/run/weights/openvino/metadata.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task": "segmentation",
|
3 |
+
"transform": {
|
4 |
+
"__version__": "1.3.0",
|
5 |
+
"transform": {
|
6 |
+
"__class_fullname__": "Compose",
|
7 |
+
"p": 1.0,
|
8 |
+
"transforms": [
|
9 |
+
{
|
10 |
+
"__class_fullname__": "Resize",
|
11 |
+
"always_apply": true,
|
12 |
+
"p": 1,
|
13 |
+
"height": 256,
|
14 |
+
"width": 256,
|
15 |
+
"interpolation": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"__class_fullname__": "Normalize",
|
19 |
+
"always_apply": false,
|
20 |
+
"p": 1.0,
|
21 |
+
"mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"std": [
|
27 |
+
0.229,
|
28 |
+
0.224,
|
29 |
+
0.225
|
30 |
+
],
|
31 |
+
"max_pixel_value": 255.0
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"__class_fullname__": "ToTensorV2",
|
35 |
+
"always_apply": true,
|
36 |
+
"p": 1.0,
|
37 |
+
"transpose_mask": false
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"bbox_params": null,
|
41 |
+
"keypoint_params": null,
|
42 |
+
"additional_targets": {
|
43 |
+
"image": "image",
|
44 |
+
"depth_image": "image"
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"image_threshold": 14.50792121887207,
|
49 |
+
"pixel_threshold": 12.323184967041016,
|
50 |
+
"min": 0.09382443130016327,
|
51 |
+
"max": 54.39400100708008
|
52 |
+
}
|
bottle/run/weights/openvino/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ee1cb6a5c082dd8669cb8ee94ac985324c49d5172ba0c3fe4f7e3cc612a8da7
|
3 |
+
size 176605956
|
bottle/run/weights/openvino/model.mapping
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<mapping>
|
3 |
+
<map>
|
4 |
+
<framework name="input" output_port_id="input" />
|
5 |
+
<IR name="input" output_port_id="0" />
|
6 |
+
</map>
|
7 |
+
<map>
|
8 |
+
<framework name="onnx::Conv_260" output_port_id="onnx::Conv_260" />
|
9 |
+
<IR name="onnx::Conv_260" output_port_id="0" />
|
10 |
+
</map>
|
11 |
+
<map>
|
12 |
+
<framework name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/conv1/Conv_output_0" />
|
13 |
+
<IR name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="2" />
|
14 |
+
</map>
|
15 |
+
<map>
|
16 |
+
<framework name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="/feature_extractor/feature_extractor/act1/Relu_output_0" />
|
17 |
+
<IR name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="1" />
|
18 |
+
</map>
|
19 |
+
<map>
|
20 |
+
<framework name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0" />
|
21 |
+
<IR name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="1" />
|
22 |
+
</map>
|
23 |
+
<map>
|
24 |
+
<framework name="onnx::Conv_263" output_port_id="onnx::Conv_263" />
|
25 |
+
<IR name="onnx::Conv_263" output_port_id="0" />
|
26 |
+
</map>
|
27 |
+
<map>
|
28 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0" />
|
29 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="2" />
|
30 |
+
</map>
|
31 |
+
<map>
|
32 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0" />
|
33 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="1" />
|
34 |
+
</map>
|
35 |
+
<map>
|
36 |
+
<framework name="onnx::Conv_266" output_port_id="onnx::Conv_266" />
|
37 |
+
<IR name="onnx::Conv_266" output_port_id="0" />
|
38 |
+
</map>
|
39 |
+
<map>
|
40 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0" />
|
41 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="2" />
|
42 |
+
</map>
|
43 |
+
<map>
|
44 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0" />
|
45 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="2" />
|
46 |
+
</map>
|
47 |
+
<map>
|
48 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0" />
|
49 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="1" />
|
50 |
+
</map>
|
51 |
+
<map>
|
52 |
+
<framework name="onnx::Conv_269" output_port_id="onnx::Conv_269" />
|
53 |
+
<IR name="onnx::Conv_269" output_port_id="0" />
|
54 |
+
</map>
|
55 |
+
<map>
|
56 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0" />
|
57 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="2" />
|
58 |
+
</map>
|
59 |
+
<map>
|
60 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0" />
|
61 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="1" />
|
62 |
+
</map>
|
63 |
+
<map>
|
64 |
+
<framework name="onnx::Conv_272" output_port_id="onnx::Conv_272" />
|
65 |
+
<IR name="onnx::Conv_272" output_port_id="0" />
|
66 |
+
</map>
|
67 |
+
<map>
|
68 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0" />
|
69 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="2" />
|
70 |
+
</map>
|
71 |
+
<map>
|
72 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0" />
|
73 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="2" />
|
74 |
+
</map>
|
75 |
+
<map>
|
76 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0" />
|
77 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="1" />
|
78 |
+
</map>
|
79 |
+
<map>
|
80 |
+
<framework name="onnx::Conv_275" output_port_id="onnx::Conv_275" />
|
81 |
+
<IR name="onnx::Conv_275" output_port_id="0" />
|
82 |
+
</map>
|
83 |
+
<map>
|
84 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0" />
|
85 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="2" />
|
86 |
+
</map>
|
87 |
+
<map>
|
88 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0" />
|
89 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="1" />
|
90 |
+
</map>
|
91 |
+
<map>
|
92 |
+
<framework name="onnx::Conv_278" output_port_id="onnx::Conv_278" />
|
93 |
+
<IR name="onnx::Conv_278" output_port_id="0" />
|
94 |
+
</map>
|
95 |
+
<map>
|
96 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0" />
|
97 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="2" />
|
98 |
+
</map>
|
99 |
+
<map>
|
100 |
+
<framework name="onnx::Conv_281" output_port_id="onnx::Conv_281" />
|
101 |
+
<IR name="onnx::Conv_281" output_port_id="0" />
|
102 |
+
</map>
|
103 |
+
<map>
|
104 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0" />
|
105 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="2" />
|
106 |
+
</map>
|
107 |
+
<map>
|
108 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0" />
|
109 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="2" />
|
110 |
+
</map>
|
111 |
+
<map>
|
112 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0" />
|
113 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="1" />
|
114 |
+
</map>
|
115 |
+
<map>
|
116 |
+
<framework name="onnx::Conv_284" output_port_id="onnx::Conv_284" />
|
117 |
+
<IR name="onnx::Conv_284" output_port_id="0" />
|
118 |
+
</map>
|
119 |
+
<map>
|
120 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0" />
|
121 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="2" />
|
122 |
+
</map>
|
123 |
+
<map>
|
124 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0" />
|
125 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="1" />
|
126 |
+
</map>
|
127 |
+
<map>
|
128 |
+
<framework name="onnx::Conv_287" output_port_id="onnx::Conv_287" />
|
129 |
+
<IR name="onnx::Conv_287" output_port_id="0" />
|
130 |
+
</map>
|
131 |
+
<map>
|
132 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0" />
|
133 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="2" />
|
134 |
+
</map>
|
135 |
+
<map>
|
136 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0" />
|
137 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="2" />
|
138 |
+
</map>
|
139 |
+
<map>
|
140 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0" />
|
141 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="1" />
|
142 |
+
</map>
|
143 |
+
<map>
|
144 |
+
<framework name="/Shape" output_port_id="/Shape_output_0" />
|
145 |
+
<IR name="/Shape" output_port_id="1" />
|
146 |
+
</map>
|
147 |
+
<map>
|
148 |
+
<framework name="/Constant_1" output_port_id="/Constant_1_output_0" />
|
149 |
+
<IR name="/Constant_1" output_port_id="0" />
|
150 |
+
</map>
|
151 |
+
<map>
|
152 |
+
<framework name="/Constant_2" output_port_id="/Constant_2_output_0" />
|
153 |
+
<IR name="/Constant_2" output_port_id="0" />
|
154 |
+
</map>
|
155 |
+
<map>
|
156 |
+
<framework name="/Slice" output_port_id="/Slice_output_0" />
|
157 |
+
<IR name="/Slice" output_port_id="4" />
|
158 |
+
</map>
|
159 |
+
<map>
|
160 |
+
<framework name="/Constant_3" output_port_id="/Constant_3_output_0" />
|
161 |
+
<IR name="/Constant_3" output_port_id="0" />
|
162 |
+
</map>
|
163 |
+
<map>
|
164 |
+
<framework name="/Concat" output_port_id="/Concat_output_0" />
|
165 |
+
<IR name="/Concat" output_port_id="2" />
|
166 |
+
</map>
|
167 |
+
<map>
|
168 |
+
<framework name="/Resize" output_port_id="/Resize_output_0" />
|
169 |
+
<IR name="/Resize" output_port_id="3" />
|
170 |
+
</map>
|
171 |
+
<map>
|
172 |
+
<framework name="/Concat_1" output_port_id="/Concat_1_output_0" />
|
173 |
+
<IR name="/Concat_1" output_port_id="2" />
|
174 |
+
</map>
|
175 |
+
<map>
|
176 |
+
<framework name="onnx::Conv_290" output_port_id="onnx::Conv_290" />
|
177 |
+
<IR name="onnx::Conv_290" output_port_id="0" />
|
178 |
+
</map>
|
179 |
+
<map>
|
180 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0" />
|
181 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="2" />
|
182 |
+
</map>
|
183 |
+
<map>
|
184 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0" />
|
185 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="1" />
|
186 |
+
</map>
|
187 |
+
<map>
|
188 |
+
<framework name="onnx::Conv_293" output_port_id="onnx::Conv_293" />
|
189 |
+
<IR name="onnx::Conv_293" output_port_id="0" />
|
190 |
+
</map>
|
191 |
+
<map>
|
192 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0" />
|
193 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="2" />
|
194 |
+
</map>
|
195 |
+
<map>
|
196 |
+
<framework name="onnx::Conv_296" output_port_id="onnx::Conv_296" />
|
197 |
+
<IR name="onnx::Conv_296" output_port_id="0" />
|
198 |
+
</map>
|
199 |
+
<map>
|
200 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0" />
|
201 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="2" />
|
202 |
+
</map>
|
203 |
+
<map>
|
204 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0" />
|
205 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="2" />
|
206 |
+
</map>
|
207 |
+
<map>
|
208 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0" />
|
209 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="1" />
|
210 |
+
</map>
|
211 |
+
<map>
|
212 |
+
<framework name="onnx::Conv_299" output_port_id="onnx::Conv_299" />
|
213 |
+
<IR name="onnx::Conv_299" output_port_id="0" />
|
214 |
+
</map>
|
215 |
+
<map>
|
216 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0" />
|
217 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="2" />
|
218 |
+
</map>
|
219 |
+
<map>
|
220 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0" />
|
221 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="1" />
|
222 |
+
</map>
|
223 |
+
<map>
|
224 |
+
<framework name="onnx::Conv_302" output_port_id="onnx::Conv_302" />
|
225 |
+
<IR name="onnx::Conv_302" output_port_id="0" />
|
226 |
+
</map>
|
227 |
+
<map>
|
228 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0" />
|
229 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="2" />
|
230 |
+
</map>
|
231 |
+
<map>
|
232 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0" />
|
233 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="2" />
|
234 |
+
</map>
|
235 |
+
<map>
|
236 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0" />
|
237 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="1" />
|
238 |
+
</map>
|
239 |
+
<map>
|
240 |
+
<framework name="/Shape_3" output_port_id="/Shape_3_output_0" />
|
241 |
+
<IR name="/Shape_3" output_port_id="1" />
|
242 |
+
</map>
|
243 |
+
<map>
|
244 |
+
<framework name="/Constant_9" output_port_id="/Constant_9_output_0" />
|
245 |
+
<IR name="/Constant_9" output_port_id="0" />
|
246 |
+
</map>
|
247 |
+
<map>
|
248 |
+
<framework name="/Constant_10" output_port_id="/Constant_10_output_0" />
|
249 |
+
<IR name="/Constant_10" output_port_id="0" />
|
250 |
+
</map>
|
251 |
+
<map>
|
252 |
+
<framework name="/Slice_1" output_port_id="/Slice_1_output_0" />
|
253 |
+
<IR name="/Slice_1" output_port_id="4" />
|
254 |
+
</map>
|
255 |
+
<map>
|
256 |
+
<framework name="/Shape_1" output_port_id="/Shape_1_output_0" />
|
257 |
+
<IR name="/Shape_1" output_port_id="1" />
|
258 |
+
</map>
|
259 |
+
<map>
|
260 |
+
<framework name="/Shape_1" output_port_id="/Shape_2_output_0" />
|
261 |
+
<IR name="/Shape_1" output_port_id="1" />
|
262 |
+
</map>
|
263 |
+
<map>
|
264 |
+
<framework name="Gather_6092" output_port_id="/Concat_2_output_0" />
|
265 |
+
<IR name="Gather_6092" output_port_id="3" />
|
266 |
+
</map>
|
267 |
+
<map>
|
268 |
+
<framework name="Gather_6092" output_port_id="/Cast_output_0" />
|
269 |
+
<IR name="Gather_6092" output_port_id="3" />
|
270 |
+
</map>
|
271 |
+
<map>
|
272 |
+
<framework name="/Concat_3" output_port_id="/Concat_3_output_0" />
|
273 |
+
<IR name="/Concat_3" output_port_id="2" />
|
274 |
+
</map>
|
275 |
+
<map>
|
276 |
+
<framework name="/Resize_1" output_port_id="/Resize_1_output_0" />
|
277 |
+
<IR name="/Resize_1" output_port_id="3" />
|
278 |
+
</map>
|
279 |
+
<map>
|
280 |
+
<framework name="/Concat_4" output_port_id="/Concat_4_output_0" />
|
281 |
+
<IR name="/Concat_4" output_port_id="2" />
|
282 |
+
</map>
|
283 |
+
<map>
|
284 |
+
<framework name="onnx::Gather_308" output_port_id="onnx::Gather_308" />
|
285 |
+
<IR name="onnx::Gather_308" output_port_id="0" />
|
286 |
+
</map>
|
287 |
+
<map>
|
288 |
+
<framework name="/Gather_2" output_port_id="/Gather_2_output_0" />
|
289 |
+
<IR name="/Gather_2" output_port_id="3" />
|
290 |
+
</map>
|
291 |
+
<map>
|
292 |
+
<framework name="/anomaly_map_generator/Constant" output_port_id="/anomaly_map_generator/Constant_output_0" />
|
293 |
+
<IR name="/anomaly_map_generator/Constant" output_port_id="0" />
|
294 |
+
</map>
|
295 |
+
<map>
|
296 |
+
<framework name="/anomaly_map_generator/Reshape" output_port_id="/anomaly_map_generator/Reshape_output_0" />
|
297 |
+
<IR name="/anomaly_map_generator/Reshape" output_port_id="2" />
|
298 |
+
</map>
|
299 |
+
<map>
|
300 |
+
<framework name="/anomaly_map_generator/Sub" output_port_id="/anomaly_map_generator/Sub_output_0" />
|
301 |
+
<IR name="/anomaly_map_generator/Sub" output_port_id="2" />
|
302 |
+
</map>
|
303 |
+
<map>
|
304 |
+
<framework name="/anomaly_map_generator/Transpose" output_port_id="/anomaly_map_generator/Transpose_output_0" />
|
305 |
+
<IR name="/anomaly_map_generator/Transpose" output_port_id="2" />
|
306 |
+
</map>
|
307 |
+
<map>
|
308 |
+
<framework name="onnx::MatMul_310" output_port_id="onnx::MatMul_310" />
|
309 |
+
<IR name="onnx::MatMul_310" output_port_id="0" />
|
310 |
+
</map>
|
311 |
+
<map>
|
312 |
+
<framework name="/anomaly_map_generator/MatMul" output_port_id="/anomaly_map_generator/MatMul_output_0" />
|
313 |
+
<IR name="/anomaly_map_generator/MatMul" output_port_id="2" />
|
314 |
+
</map>
|
315 |
+
<map>
|
316 |
+
<framework name="/anomaly_map_generator/Mul" output_port_id="/anomaly_map_generator/Mul_output_0" />
|
317 |
+
<IR name="/anomaly_map_generator/Mul" output_port_id="2" />
|
318 |
+
</map>
|
319 |
+
<map>
|
320 |
+
<framework name="/anomaly_map_generator/ReduceSum" output_port_id="/anomaly_map_generator/ReduceSum_output_0" />
|
321 |
+
<IR name="/anomaly_map_generator/ReduceSum" output_port_id="2" />
|
322 |
+
</map>
|
323 |
+
<map>
|
324 |
+
<framework name="/anomaly_map_generator/Constant_1" output_port_id="/anomaly_map_generator/Constant_1_output_0" />
|
325 |
+
<IR name="/anomaly_map_generator/Constant_1" output_port_id="0" />
|
326 |
+
</map>
|
327 |
+
<map>
|
328 |
+
<framework name="/anomaly_map_generator/Reshape_1" output_port_id="/anomaly_map_generator/Reshape_1_output_0" />
|
329 |
+
<IR name="/anomaly_map_generator/Reshape_1" output_port_id="2" />
|
330 |
+
</map>
|
331 |
+
<map>
|
332 |
+
<framework name="/anomaly_map_generator/Clip" output_port_id="/anomaly_map_generator/Clip_output_0" />
|
333 |
+
<IR name="/anomaly_map_generator/Clip" output_port_id="1" />
|
334 |
+
</map>
|
335 |
+
<map>
|
336 |
+
<framework name="/anomaly_map_generator/Sqrt" output_port_id="/anomaly_map_generator/Sqrt_output_0" />
|
337 |
+
<IR name="/anomaly_map_generator/Sqrt" output_port_id="1" />
|
338 |
+
</map>
|
339 |
+
<map>
|
340 |
+
<framework name="/anomaly_map_generator/Shape" output_port_id="/anomaly_map_generator/Shape_output_0" />
|
341 |
+
<IR name="/anomaly_map_generator/Shape" output_port_id="1" />
|
342 |
+
</map>
|
343 |
+
<map>
|
344 |
+
<framework name="/anomaly_map_generator/Constant_4" output_port_id="/anomaly_map_generator/Constant_4_output_0" />
|
345 |
+
<IR name="/anomaly_map_generator/Constant_4" output_port_id="0" />
|
346 |
+
</map>
|
347 |
+
<map>
|
348 |
+
<framework name="/anomaly_map_generator/Constant_5" output_port_id="/anomaly_map_generator/Constant_5_output_0" />
|
349 |
+
<IR name="/anomaly_map_generator/Constant_5" output_port_id="0" />
|
350 |
+
</map>
|
351 |
+
<map>
|
352 |
+
<framework name="/anomaly_map_generator/Slice" output_port_id="/anomaly_map_generator/Slice_output_0" />
|
353 |
+
<IR name="/anomaly_map_generator/Slice" output_port_id="4" />
|
354 |
+
</map>
|
355 |
+
<map>
|
356 |
+
<framework name="/anomaly_map_generator/Constant_6" output_port_id="/anomaly_map_generator/Constant_6_output_0" />
|
357 |
+
<IR name="/anomaly_map_generator/Constant_6" output_port_id="0" />
|
358 |
+
</map>
|
359 |
+
<map>
|
360 |
+
<framework name="/anomaly_map_generator/Concat" output_port_id="/anomaly_map_generator/Concat_output_0" />
|
361 |
+
<IR name="/anomaly_map_generator/Concat" output_port_id="2" />
|
362 |
+
</map>
|
363 |
+
<map>
|
364 |
+
<framework name="/anomaly_map_generator/Resize" output_port_id="/anomaly_map_generator/Resize_output_0" />
|
365 |
+
<IR name="/anomaly_map_generator/Resize" output_port_id="3" />
|
366 |
+
</map>
|
367 |
+
<map>
|
368 |
+
<framework name="/anomaly_map_generator/blur/Pad" output_port_id="/anomaly_map_generator/blur/Pad_output_0" />
|
369 |
+
<IR name="/anomaly_map_generator/blur/Pad" output_port_id="4" />
|
370 |
+
</map>
|
371 |
+
<map>
|
372 |
+
<framework name="anomaly_map_generator.blur.kernel" output_port_id="anomaly_map_generator.blur.kernel" />
|
373 |
+
<IR name="anomaly_map_generator.blur.kernel" output_port_id="0" />
|
374 |
+
</map>
|
375 |
+
<map>
|
376 |
+
<framework name="/anomaly_map_generator/blur/Conv" output_port_id="/anomaly_map_generator/blur/Conv_output_0" />
|
377 |
+
<IR name="/anomaly_map_generator/blur/Conv" output_port_id="2" />
|
378 |
+
</map>
|
379 |
+
<map>
|
380 |
+
<framework name="/anomaly_map_generator/blur/Constant_8" output_port_id="/anomaly_map_generator/blur/Constant_8_output_0" />
|
381 |
+
<IR name="/anomaly_map_generator/blur/Constant_8" output_port_id="0" />
|
382 |
+
</map>
|
383 |
+
<map>
|
384 |
+
<framework name="output" output_port_id="output" />
|
385 |
+
<IR name="output" output_port_id="2" />
|
386 |
+
</map>
|
387 |
+
</mapping>
|
bottle/run/weights/openvino/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87ab506e58426d2e495b1f4c4807843a0c9b161a2b045bccf4d3092a05665b85
|
3 |
+
size 176626689
|
bottle/run/weights/openvino/model.xml
ADDED
@@ -0,0 +1,2703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="torch_jit" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="1,3,256,256" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>1</dim>
|
9 |
+
<dim>3</dim>
|
10 |
+
<dim>256</dim>
|
11 |
+
<dim>256</dim>
|
12 |
+
</port>
|
13 |
+
</output>
|
14 |
+
</layer>
|
15 |
+
<layer id="1" name="onnx::Conv_260" type="Const" version="opset1">
|
16 |
+
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
|
17 |
+
<output>
|
18 |
+
<port id="0" precision="FP32" names="onnx::Conv_260">
|
19 |
+
<dim>64</dim>
|
20 |
+
<dim>3</dim>
|
21 |
+
<dim>7</dim>
|
22 |
+
<dim>7</dim>
|
23 |
+
</port>
|
24 |
+
</output>
|
25 |
+
</layer>
|
26 |
+
<layer id="2" name="/feature_extractor/feature_extractor/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
27 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP32">
|
30 |
+
<dim>1</dim>
|
31 |
+
<dim>3</dim>
|
32 |
+
<dim>256</dim>
|
33 |
+
<dim>256</dim>
|
34 |
+
</port>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>64</dim>
|
37 |
+
<dim>3</dim>
|
38 |
+
<dim>7</dim>
|
39 |
+
<dim>7</dim>
|
40 |
+
</port>
|
41 |
+
</input>
|
42 |
+
<output>
|
43 |
+
<port id="2" precision="FP32">
|
44 |
+
<dim>1</dim>
|
45 |
+
<dim>64</dim>
|
46 |
+
<dim>128</dim>
|
47 |
+
<dim>128</dim>
|
48 |
+
</port>
|
49 |
+
</output>
|
50 |
+
</layer>
|
51 |
+
<layer id="3" name="Reshape_55" type="Const" version="opset1">
|
52 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
|
53 |
+
<output>
|
54 |
+
<port id="0" precision="FP32">
|
55 |
+
<dim>1</dim>
|
56 |
+
<dim>64</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
<dim>1</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="/feature_extractor/feature_extractor/conv1/Conv" type="Add" version="opset1">
|
63 |
+
<data auto_broadcast="numpy" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="FP32">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>64</dim>
|
68 |
+
<dim>128</dim>
|
69 |
+
<dim>128</dim>
|
70 |
+
</port>
|
71 |
+
<port id="1" precision="FP32">
|
72 |
+
<dim>1</dim>
|
73 |
+
<dim>64</dim>
|
74 |
+
<dim>1</dim>
|
75 |
+
<dim>1</dim>
|
76 |
+
</port>
|
77 |
+
</input>
|
78 |
+
<output>
|
79 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/conv1/Conv_output_0">
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>64</dim>
|
82 |
+
<dim>128</dim>
|
83 |
+
<dim>128</dim>
|
84 |
+
</port>
|
85 |
+
</output>
|
86 |
+
</layer>
|
87 |
+
<layer id="5" name="/feature_extractor/feature_extractor/act1/Relu" type="ReLU" version="opset1">
|
88 |
+
<input>
|
89 |
+
<port id="0" precision="FP32">
|
90 |
+
<dim>1</dim>
|
91 |
+
<dim>64</dim>
|
92 |
+
<dim>128</dim>
|
93 |
+
<dim>128</dim>
|
94 |
+
</port>
|
95 |
+
</input>
|
96 |
+
<output>
|
97 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/act1/Relu_output_0">
|
98 |
+
<dim>1</dim>
|
99 |
+
<dim>64</dim>
|
100 |
+
<dim>128</dim>
|
101 |
+
<dim>128</dim>
|
102 |
+
</port>
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="6" name="/feature_extractor/feature_extractor/maxpool/MaxPool" type="MaxPool" version="opset8">
|
106 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="0" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="FP32">
|
109 |
+
<dim>1</dim>
|
110 |
+
<dim>64</dim>
|
111 |
+
<dim>128</dim>
|
112 |
+
<dim>128</dim>
|
113 |
+
</port>
|
114 |
+
</input>
|
115 |
+
<output>
|
116 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0">
|
117 |
+
<dim>1</dim>
|
118 |
+
<dim>64</dim>
|
119 |
+
<dim>64</dim>
|
120 |
+
<dim>64</dim>
|
121 |
+
</port>
|
122 |
+
<port id="2" precision="I64">
|
123 |
+
<dim>1</dim>
|
124 |
+
<dim>64</dim>
|
125 |
+
<dim>64</dim>
|
126 |
+
<dim>64</dim>
|
127 |
+
</port>
|
128 |
+
</output>
|
129 |
+
</layer>
|
130 |
+
<layer id="7" name="onnx::Conv_263" type="Const" version="opset1">
|
131 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="37888" size="147456" />
|
132 |
+
<output>
|
133 |
+
<port id="0" precision="FP32" names="onnx::Conv_263">
|
134 |
+
<dim>64</dim>
|
135 |
+
<dim>64</dim>
|
136 |
+
<dim>3</dim>
|
137 |
+
<dim>3</dim>
|
138 |
+
</port>
|
139 |
+
</output>
|
140 |
+
</layer>
|
141 |
+
<layer id="8" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
142 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="FP32">
|
145 |
+
<dim>1</dim>
|
146 |
+
<dim>64</dim>
|
147 |
+
<dim>64</dim>
|
148 |
+
<dim>64</dim>
|
149 |
+
</port>
|
150 |
+
<port id="1" precision="FP32">
|
151 |
+
<dim>64</dim>
|
152 |
+
<dim>64</dim>
|
153 |
+
<dim>3</dim>
|
154 |
+
<dim>3</dim>
|
155 |
+
</port>
|
156 |
+
</input>
|
157 |
+
<output>
|
158 |
+
<port id="2" precision="FP32">
|
159 |
+
<dim>1</dim>
|
160 |
+
<dim>64</dim>
|
161 |
+
<dim>64</dim>
|
162 |
+
<dim>64</dim>
|
163 |
+
</port>
|
164 |
+
</output>
|
165 |
+
</layer>
|
166 |
+
<layer id="9" name="Reshape_105" type="Const" version="opset1">
|
167 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="185344" size="256" />
|
168 |
+
<output>
|
169 |
+
<port id="0" precision="FP32">
|
170 |
+
<dim>1</dim>
|
171 |
+
<dim>64</dim>
|
172 |
+
<dim>1</dim>
|
173 |
+
<dim>1</dim>
|
174 |
+
</port>
|
175 |
+
</output>
|
176 |
+
</layer>
|
177 |
+
<layer id="10" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" type="Add" version="opset1">
|
178 |
+
<data auto_broadcast="numpy" />
|
179 |
+
<input>
|
180 |
+
<port id="0" precision="FP32">
|
181 |
+
<dim>1</dim>
|
182 |
+
<dim>64</dim>
|
183 |
+
<dim>64</dim>
|
184 |
+
<dim>64</dim>
|
185 |
+
</port>
|
186 |
+
<port id="1" precision="FP32">
|
187 |
+
<dim>1</dim>
|
188 |
+
<dim>64</dim>
|
189 |
+
<dim>1</dim>
|
190 |
+
<dim>1</dim>
|
191 |
+
</port>
|
192 |
+
</input>
|
193 |
+
<output>
|
194 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0">
|
195 |
+
<dim>1</dim>
|
196 |
+
<dim>64</dim>
|
197 |
+
<dim>64</dim>
|
198 |
+
<dim>64</dim>
|
199 |
+
</port>
|
200 |
+
</output>
|
201 |
+
</layer>
|
202 |
+
<layer id="11" name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" type="ReLU" version="opset1">
|
203 |
+
<input>
|
204 |
+
<port id="0" precision="FP32">
|
205 |
+
<dim>1</dim>
|
206 |
+
<dim>64</dim>
|
207 |
+
<dim>64</dim>
|
208 |
+
<dim>64</dim>
|
209 |
+
</port>
|
210 |
+
</input>
|
211 |
+
<output>
|
212 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0">
|
213 |
+
<dim>1</dim>
|
214 |
+
<dim>64</dim>
|
215 |
+
<dim>64</dim>
|
216 |
+
<dim>64</dim>
|
217 |
+
</port>
|
218 |
+
</output>
|
219 |
+
</layer>
|
220 |
+
<layer id="12" name="onnx::Conv_266" type="Const" version="opset1">
|
221 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="185600" size="147456" />
|
222 |
+
<output>
|
223 |
+
<port id="0" precision="FP32" names="onnx::Conv_266">
|
224 |
+
<dim>64</dim>
|
225 |
+
<dim>64</dim>
|
226 |
+
<dim>3</dim>
|
227 |
+
<dim>3</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="13" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
232 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
233 |
+
<input>
|
234 |
+
<port id="0" precision="FP32">
|
235 |
+
<dim>1</dim>
|
236 |
+
<dim>64</dim>
|
237 |
+
<dim>64</dim>
|
238 |
+
<dim>64</dim>
|
239 |
+
</port>
|
240 |
+
<port id="1" precision="FP32">
|
241 |
+
<dim>64</dim>
|
242 |
+
<dim>64</dim>
|
243 |
+
<dim>3</dim>
|
244 |
+
<dim>3</dim>
|
245 |
+
</port>
|
246 |
+
</input>
|
247 |
+
<output>
|
248 |
+
<port id="2" precision="FP32">
|
249 |
+
<dim>1</dim>
|
250 |
+
<dim>64</dim>
|
251 |
+
<dim>64</dim>
|
252 |
+
<dim>64</dim>
|
253 |
+
</port>
|
254 |
+
</output>
|
255 |
+
</layer>
|
256 |
+
<layer id="14" name="Reshape_154" type="Const" version="opset1">
|
257 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="333056" size="256" />
|
258 |
+
<output>
|
259 |
+
<port id="0" precision="FP32">
|
260 |
+
<dim>1</dim>
|
261 |
+
<dim>64</dim>
|
262 |
+
<dim>1</dim>
|
263 |
+
<dim>1</dim>
|
264 |
+
</port>
|
265 |
+
</output>
|
266 |
+
</layer>
|
267 |
+
<layer id="15" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" type="Add" version="opset1">
|
268 |
+
<data auto_broadcast="numpy" />
|
269 |
+
<input>
|
270 |
+
<port id="0" precision="FP32">
|
271 |
+
<dim>1</dim>
|
272 |
+
<dim>64</dim>
|
273 |
+
<dim>64</dim>
|
274 |
+
<dim>64</dim>
|
275 |
+
</port>
|
276 |
+
<port id="1" precision="FP32">
|
277 |
+
<dim>1</dim>
|
278 |
+
<dim>64</dim>
|
279 |
+
<dim>1</dim>
|
280 |
+
<dim>1</dim>
|
281 |
+
</port>
|
282 |
+
</input>
|
283 |
+
<output>
|
284 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0">
|
285 |
+
<dim>1</dim>
|
286 |
+
<dim>64</dim>
|
287 |
+
<dim>64</dim>
|
288 |
+
<dim>64</dim>
|
289 |
+
</port>
|
290 |
+
</output>
|
291 |
+
</layer>
|
292 |
+
<layer id="16" name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" type="Add" version="opset1">
|
293 |
+
<data auto_broadcast="numpy" />
|
294 |
+
<input>
|
295 |
+
<port id="0" precision="FP32">
|
296 |
+
<dim>1</dim>
|
297 |
+
<dim>64</dim>
|
298 |
+
<dim>64</dim>
|
299 |
+
<dim>64</dim>
|
300 |
+
</port>
|
301 |
+
<port id="1" precision="FP32">
|
302 |
+
<dim>1</dim>
|
303 |
+
<dim>64</dim>
|
304 |
+
<dim>64</dim>
|
305 |
+
<dim>64</dim>
|
306 |
+
</port>
|
307 |
+
</input>
|
308 |
+
<output>
|
309 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0">
|
310 |
+
<dim>1</dim>
|
311 |
+
<dim>64</dim>
|
312 |
+
<dim>64</dim>
|
313 |
+
<dim>64</dim>
|
314 |
+
</port>
|
315 |
+
</output>
|
316 |
+
</layer>
|
317 |
+
<layer id="17" name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" type="ReLU" version="opset1">
|
318 |
+
<input>
|
319 |
+
<port id="0" precision="FP32">
|
320 |
+
<dim>1</dim>
|
321 |
+
<dim>64</dim>
|
322 |
+
<dim>64</dim>
|
323 |
+
<dim>64</dim>
|
324 |
+
</port>
|
325 |
+
</input>
|
326 |
+
<output>
|
327 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0">
|
328 |
+
<dim>1</dim>
|
329 |
+
<dim>64</dim>
|
330 |
+
<dim>64</dim>
|
331 |
+
<dim>64</dim>
|
332 |
+
</port>
|
333 |
+
</output>
|
334 |
+
</layer>
|
335 |
+
<layer id="18" name="onnx::Conv_269" type="Const" version="opset1">
|
336 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="333312" size="147456" />
|
337 |
+
<output>
|
338 |
+
<port id="0" precision="FP32" names="onnx::Conv_269">
|
339 |
+
<dim>64</dim>
|
340 |
+
<dim>64</dim>
|
341 |
+
<dim>3</dim>
|
342 |
+
<dim>3</dim>
|
343 |
+
</port>
|
344 |
+
</output>
|
345 |
+
</layer>
|
346 |
+
<layer id="19" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
347 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
348 |
+
<input>
|
349 |
+
<port id="0" precision="FP32">
|
350 |
+
<dim>1</dim>
|
351 |
+
<dim>64</dim>
|
352 |
+
<dim>64</dim>
|
353 |
+
<dim>64</dim>
|
354 |
+
</port>
|
355 |
+
<port id="1" precision="FP32">
|
356 |
+
<dim>64</dim>
|
357 |
+
<dim>64</dim>
|
358 |
+
<dim>3</dim>
|
359 |
+
<dim>3</dim>
|
360 |
+
</port>
|
361 |
+
</input>
|
362 |
+
<output>
|
363 |
+
<port id="2" precision="FP32">
|
364 |
+
<dim>1</dim>
|
365 |
+
<dim>64</dim>
|
366 |
+
<dim>64</dim>
|
367 |
+
<dim>64</dim>
|
368 |
+
</port>
|
369 |
+
</output>
|
370 |
+
</layer>
|
371 |
+
<layer id="20" name="Reshape_204" type="Const" version="opset1">
|
372 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="480768" size="256" />
|
373 |
+
<output>
|
374 |
+
<port id="0" precision="FP32">
|
375 |
+
<dim>1</dim>
|
376 |
+
<dim>64</dim>
|
377 |
+
<dim>1</dim>
|
378 |
+
<dim>1</dim>
|
379 |
+
</port>
|
380 |
+
</output>
|
381 |
+
</layer>
|
382 |
+
<layer id="21" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" type="Add" version="opset1">
|
383 |
+
<data auto_broadcast="numpy" />
|
384 |
+
<input>
|
385 |
+
<port id="0" precision="FP32">
|
386 |
+
<dim>1</dim>
|
387 |
+
<dim>64</dim>
|
388 |
+
<dim>64</dim>
|
389 |
+
<dim>64</dim>
|
390 |
+
</port>
|
391 |
+
<port id="1" precision="FP32">
|
392 |
+
<dim>1</dim>
|
393 |
+
<dim>64</dim>
|
394 |
+
<dim>1</dim>
|
395 |
+
<dim>1</dim>
|
396 |
+
</port>
|
397 |
+
</input>
|
398 |
+
<output>
|
399 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0">
|
400 |
+
<dim>1</dim>
|
401 |
+
<dim>64</dim>
|
402 |
+
<dim>64</dim>
|
403 |
+
<dim>64</dim>
|
404 |
+
</port>
|
405 |
+
</output>
|
406 |
+
</layer>
|
407 |
+
<layer id="22" name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" type="ReLU" version="opset1">
|
408 |
+
<input>
|
409 |
+
<port id="0" precision="FP32">
|
410 |
+
<dim>1</dim>
|
411 |
+
<dim>64</dim>
|
412 |
+
<dim>64</dim>
|
413 |
+
<dim>64</dim>
|
414 |
+
</port>
|
415 |
+
</input>
|
416 |
+
<output>
|
417 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0">
|
418 |
+
<dim>1</dim>
|
419 |
+
<dim>64</dim>
|
420 |
+
<dim>64</dim>
|
421 |
+
<dim>64</dim>
|
422 |
+
</port>
|
423 |
+
</output>
|
424 |
+
</layer>
|
425 |
+
<layer id="23" name="onnx::Conv_272" type="Const" version="opset1">
|
426 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="481024" size="147456" />
|
427 |
+
<output>
|
428 |
+
<port id="0" precision="FP32" names="onnx::Conv_272">
|
429 |
+
<dim>64</dim>
|
430 |
+
<dim>64</dim>
|
431 |
+
<dim>3</dim>
|
432 |
+
<dim>3</dim>
|
433 |
+
</port>
|
434 |
+
</output>
|
435 |
+
</layer>
|
436 |
+
<layer id="24" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
437 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
438 |
+
<input>
|
439 |
+
<port id="0" precision="FP32">
|
440 |
+
<dim>1</dim>
|
441 |
+
<dim>64</dim>
|
442 |
+
<dim>64</dim>
|
443 |
+
<dim>64</dim>
|
444 |
+
</port>
|
445 |
+
<port id="1" precision="FP32">
|
446 |
+
<dim>64</dim>
|
447 |
+
<dim>64</dim>
|
448 |
+
<dim>3</dim>
|
449 |
+
<dim>3</dim>
|
450 |
+
</port>
|
451 |
+
</input>
|
452 |
+
<output>
|
453 |
+
<port id="2" precision="FP32">
|
454 |
+
<dim>1</dim>
|
455 |
+
<dim>64</dim>
|
456 |
+
<dim>64</dim>
|
457 |
+
<dim>64</dim>
|
458 |
+
</port>
|
459 |
+
</output>
|
460 |
+
</layer>
|
461 |
+
<layer id="25" name="Reshape_253" type="Const" version="opset1">
|
462 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="628480" size="256" />
|
463 |
+
<output>
|
464 |
+
<port id="0" precision="FP32">
|
465 |
+
<dim>1</dim>
|
466 |
+
<dim>64</dim>
|
467 |
+
<dim>1</dim>
|
468 |
+
<dim>1</dim>
|
469 |
+
</port>
|
470 |
+
</output>
|
471 |
+
</layer>
|
472 |
+
<layer id="26" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" type="Add" version="opset1">
|
473 |
+
<data auto_broadcast="numpy" />
|
474 |
+
<input>
|
475 |
+
<port id="0" precision="FP32">
|
476 |
+
<dim>1</dim>
|
477 |
+
<dim>64</dim>
|
478 |
+
<dim>64</dim>
|
479 |
+
<dim>64</dim>
|
480 |
+
</port>
|
481 |
+
<port id="1" precision="FP32">
|
482 |
+
<dim>1</dim>
|
483 |
+
<dim>64</dim>
|
484 |
+
<dim>1</dim>
|
485 |
+
<dim>1</dim>
|
486 |
+
</port>
|
487 |
+
</input>
|
488 |
+
<output>
|
489 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0">
|
490 |
+
<dim>1</dim>
|
491 |
+
<dim>64</dim>
|
492 |
+
<dim>64</dim>
|
493 |
+
<dim>64</dim>
|
494 |
+
</port>
|
495 |
+
</output>
|
496 |
+
</layer>
|
497 |
+
<layer id="27" name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" type="Add" version="opset1">
|
498 |
+
<data auto_broadcast="numpy" />
|
499 |
+
<input>
|
500 |
+
<port id="0" precision="FP32">
|
501 |
+
<dim>1</dim>
|
502 |
+
<dim>64</dim>
|
503 |
+
<dim>64</dim>
|
504 |
+
<dim>64</dim>
|
505 |
+
</port>
|
506 |
+
<port id="1" precision="FP32">
|
507 |
+
<dim>1</dim>
|
508 |
+
<dim>64</dim>
|
509 |
+
<dim>64</dim>
|
510 |
+
<dim>64</dim>
|
511 |
+
</port>
|
512 |
+
</input>
|
513 |
+
<output>
|
514 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0">
|
515 |
+
<dim>1</dim>
|
516 |
+
<dim>64</dim>
|
517 |
+
<dim>64</dim>
|
518 |
+
<dim>64</dim>
|
519 |
+
</port>
|
520 |
+
</output>
|
521 |
+
</layer>
|
522 |
+
<layer id="28" name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" type="ReLU" version="opset1">
|
523 |
+
<input>
|
524 |
+
<port id="0" precision="FP32">
|
525 |
+
<dim>1</dim>
|
526 |
+
<dim>64</dim>
|
527 |
+
<dim>64</dim>
|
528 |
+
<dim>64</dim>
|
529 |
+
</port>
|
530 |
+
</input>
|
531 |
+
<output>
|
532 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0">
|
533 |
+
<dim>1</dim>
|
534 |
+
<dim>64</dim>
|
535 |
+
<dim>64</dim>
|
536 |
+
<dim>64</dim>
|
537 |
+
</port>
|
538 |
+
</output>
|
539 |
+
</layer>
|
540 |
+
<layer id="29" name="onnx::Conv_275" type="Const" version="opset1">
|
541 |
+
<data element_type="f32" shape="128, 64, 3, 3" offset="628736" size="294912" />
|
542 |
+
<output>
|
543 |
+
<port id="0" precision="FP32" names="onnx::Conv_275">
|
544 |
+
<dim>128</dim>
|
545 |
+
<dim>64</dim>
|
546 |
+
<dim>3</dim>
|
547 |
+
<dim>3</dim>
|
548 |
+
</port>
|
549 |
+
</output>
|
550 |
+
</layer>
|
551 |
+
<layer id="30" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
552 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
553 |
+
<input>
|
554 |
+
<port id="0" precision="FP32">
|
555 |
+
<dim>1</dim>
|
556 |
+
<dim>64</dim>
|
557 |
+
<dim>64</dim>
|
558 |
+
<dim>64</dim>
|
559 |
+
</port>
|
560 |
+
<port id="1" precision="FP32">
|
561 |
+
<dim>128</dim>
|
562 |
+
<dim>64</dim>
|
563 |
+
<dim>3</dim>
|
564 |
+
<dim>3</dim>
|
565 |
+
</port>
|
566 |
+
</input>
|
567 |
+
<output>
|
568 |
+
<port id="2" precision="FP32">
|
569 |
+
<dim>1</dim>
|
570 |
+
<dim>128</dim>
|
571 |
+
<dim>32</dim>
|
572 |
+
<dim>32</dim>
|
573 |
+
</port>
|
574 |
+
</output>
|
575 |
+
</layer>
|
576 |
+
<layer id="31" name="Reshape_303" type="Const" version="opset1">
|
577 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="923648" size="512" />
|
578 |
+
<output>
|
579 |
+
<port id="0" precision="FP32">
|
580 |
+
<dim>1</dim>
|
581 |
+
<dim>128</dim>
|
582 |
+
<dim>1</dim>
|
583 |
+
<dim>1</dim>
|
584 |
+
</port>
|
585 |
+
</output>
|
586 |
+
</layer>
|
587 |
+
<layer id="32" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" type="Add" version="opset1">
|
588 |
+
<data auto_broadcast="numpy" />
|
589 |
+
<input>
|
590 |
+
<port id="0" precision="FP32">
|
591 |
+
<dim>1</dim>
|
592 |
+
<dim>128</dim>
|
593 |
+
<dim>32</dim>
|
594 |
+
<dim>32</dim>
|
595 |
+
</port>
|
596 |
+
<port id="1" precision="FP32">
|
597 |
+
<dim>1</dim>
|
598 |
+
<dim>128</dim>
|
599 |
+
<dim>1</dim>
|
600 |
+
<dim>1</dim>
|
601 |
+
</port>
|
602 |
+
</input>
|
603 |
+
<output>
|
604 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0">
|
605 |
+
<dim>1</dim>
|
606 |
+
<dim>128</dim>
|
607 |
+
<dim>32</dim>
|
608 |
+
<dim>32</dim>
|
609 |
+
</port>
|
610 |
+
</output>
|
611 |
+
</layer>
|
612 |
+
<layer id="33" name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" type="ReLU" version="opset1">
|
613 |
+
<input>
|
614 |
+
<port id="0" precision="FP32">
|
615 |
+
<dim>1</dim>
|
616 |
+
<dim>128</dim>
|
617 |
+
<dim>32</dim>
|
618 |
+
<dim>32</dim>
|
619 |
+
</port>
|
620 |
+
</input>
|
621 |
+
<output>
|
622 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0">
|
623 |
+
<dim>1</dim>
|
624 |
+
<dim>128</dim>
|
625 |
+
<dim>32</dim>
|
626 |
+
<dim>32</dim>
|
627 |
+
</port>
|
628 |
+
</output>
|
629 |
+
</layer>
|
630 |
+
<layer id="34" name="onnx::Conv_278" type="Const" version="opset1">
|
631 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="924160" size="589824" />
|
632 |
+
<output>
|
633 |
+
<port id="0" precision="FP32" names="onnx::Conv_278">
|
634 |
+
<dim>128</dim>
|
635 |
+
<dim>128</dim>
|
636 |
+
<dim>3</dim>
|
637 |
+
<dim>3</dim>
|
638 |
+
</port>
|
639 |
+
</output>
|
640 |
+
</layer>
|
641 |
+
<layer id="35" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
642 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
643 |
+
<input>
|
644 |
+
<port id="0" precision="FP32">
|
645 |
+
<dim>1</dim>
|
646 |
+
<dim>128</dim>
|
647 |
+
<dim>32</dim>
|
648 |
+
<dim>32</dim>
|
649 |
+
</port>
|
650 |
+
<port id="1" precision="FP32">
|
651 |
+
<dim>128</dim>
|
652 |
+
<dim>128</dim>
|
653 |
+
<dim>3</dim>
|
654 |
+
<dim>3</dim>
|
655 |
+
</port>
|
656 |
+
</input>
|
657 |
+
<output>
|
658 |
+
<port id="2" precision="FP32">
|
659 |
+
<dim>1</dim>
|
660 |
+
<dim>128</dim>
|
661 |
+
<dim>32</dim>
|
662 |
+
<dim>32</dim>
|
663 |
+
</port>
|
664 |
+
</output>
|
665 |
+
</layer>
|
666 |
+
<layer id="36" name="Reshape_352" type="Const" version="opset1">
|
667 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1513984" size="512" />
|
668 |
+
<output>
|
669 |
+
<port id="0" precision="FP32">
|
670 |
+
<dim>1</dim>
|
671 |
+
<dim>128</dim>
|
672 |
+
<dim>1</dim>
|
673 |
+
<dim>1</dim>
|
674 |
+
</port>
|
675 |
+
</output>
|
676 |
+
</layer>
|
677 |
+
<layer id="37" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" type="Add" version="opset1">
|
678 |
+
<data auto_broadcast="numpy" />
|
679 |
+
<input>
|
680 |
+
<port id="0" precision="FP32">
|
681 |
+
<dim>1</dim>
|
682 |
+
<dim>128</dim>
|
683 |
+
<dim>32</dim>
|
684 |
+
<dim>32</dim>
|
685 |
+
</port>
|
686 |
+
<port id="1" precision="FP32">
|
687 |
+
<dim>1</dim>
|
688 |
+
<dim>128</dim>
|
689 |
+
<dim>1</dim>
|
690 |
+
<dim>1</dim>
|
691 |
+
</port>
|
692 |
+
</input>
|
693 |
+
<output>
|
694 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0">
|
695 |
+
<dim>1</dim>
|
696 |
+
<dim>128</dim>
|
697 |
+
<dim>32</dim>
|
698 |
+
<dim>32</dim>
|
699 |
+
</port>
|
700 |
+
</output>
|
701 |
+
</layer>
|
702 |
+
<layer id="38" name="onnx::Conv_281" type="Const" version="opset1">
|
703 |
+
<data element_type="f32" shape="128, 64, 1, 1" offset="1514496" size="32768" />
|
704 |
+
<output>
|
705 |
+
<port id="0" precision="FP32" names="onnx::Conv_281">
|
706 |
+
<dim>128</dim>
|
707 |
+
<dim>64</dim>
|
708 |
+
<dim>1</dim>
|
709 |
+
<dim>1</dim>
|
710 |
+
</port>
|
711 |
+
</output>
|
712 |
+
</layer>
|
713 |
+
<layer id="39" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
714 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
715 |
+
<input>
|
716 |
+
<port id="0" precision="FP32">
|
717 |
+
<dim>1</dim>
|
718 |
+
<dim>64</dim>
|
719 |
+
<dim>64</dim>
|
720 |
+
<dim>64</dim>
|
721 |
+
</port>
|
722 |
+
<port id="1" precision="FP32">
|
723 |
+
<dim>128</dim>
|
724 |
+
<dim>64</dim>
|
725 |
+
<dim>1</dim>
|
726 |
+
<dim>1</dim>
|
727 |
+
</port>
|
728 |
+
</input>
|
729 |
+
<output>
|
730 |
+
<port id="2" precision="FP32">
|
731 |
+
<dim>1</dim>
|
732 |
+
<dim>128</dim>
|
733 |
+
<dim>32</dim>
|
734 |
+
<dim>32</dim>
|
735 |
+
</port>
|
736 |
+
</output>
|
737 |
+
</layer>
|
738 |
+
<layer id="40" name="Reshape_400" type="Const" version="opset1">
|
739 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1547264" size="512" />
|
740 |
+
<output>
|
741 |
+
<port id="0" precision="FP32">
|
742 |
+
<dim>1</dim>
|
743 |
+
<dim>128</dim>
|
744 |
+
<dim>1</dim>
|
745 |
+
<dim>1</dim>
|
746 |
+
</port>
|
747 |
+
</output>
|
748 |
+
</layer>
|
749 |
+
<layer id="41" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
750 |
+
<data auto_broadcast="numpy" />
|
751 |
+
<input>
|
752 |
+
<port id="0" precision="FP32">
|
753 |
+
<dim>1</dim>
|
754 |
+
<dim>128</dim>
|
755 |
+
<dim>32</dim>
|
756 |
+
<dim>32</dim>
|
757 |
+
</port>
|
758 |
+
<port id="1" precision="FP32">
|
759 |
+
<dim>1</dim>
|
760 |
+
<dim>128</dim>
|
761 |
+
<dim>1</dim>
|
762 |
+
<dim>1</dim>
|
763 |
+
</port>
|
764 |
+
</input>
|
765 |
+
<output>
|
766 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0">
|
767 |
+
<dim>1</dim>
|
768 |
+
<dim>128</dim>
|
769 |
+
<dim>32</dim>
|
770 |
+
<dim>32</dim>
|
771 |
+
</port>
|
772 |
+
</output>
|
773 |
+
</layer>
|
774 |
+
<layer id="42" name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" type="Add" version="opset1">
|
775 |
+
<data auto_broadcast="numpy" />
|
776 |
+
<input>
|
777 |
+
<port id="0" precision="FP32">
|
778 |
+
<dim>1</dim>
|
779 |
+
<dim>128</dim>
|
780 |
+
<dim>32</dim>
|
781 |
+
<dim>32</dim>
|
782 |
+
</port>
|
783 |
+
<port id="1" precision="FP32">
|
784 |
+
<dim>1</dim>
|
785 |
+
<dim>128</dim>
|
786 |
+
<dim>32</dim>
|
787 |
+
<dim>32</dim>
|
788 |
+
</port>
|
789 |
+
</input>
|
790 |
+
<output>
|
791 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0">
|
792 |
+
<dim>1</dim>
|
793 |
+
<dim>128</dim>
|
794 |
+
<dim>32</dim>
|
795 |
+
<dim>32</dim>
|
796 |
+
</port>
|
797 |
+
</output>
|
798 |
+
</layer>
|
799 |
+
<layer id="43" name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" type="ReLU" version="opset1">
|
800 |
+
<input>
|
801 |
+
<port id="0" precision="FP32">
|
802 |
+
<dim>1</dim>
|
803 |
+
<dim>128</dim>
|
804 |
+
<dim>32</dim>
|
805 |
+
<dim>32</dim>
|
806 |
+
</port>
|
807 |
+
</input>
|
808 |
+
<output>
|
809 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0">
|
810 |
+
<dim>1</dim>
|
811 |
+
<dim>128</dim>
|
812 |
+
<dim>32</dim>
|
813 |
+
<dim>32</dim>
|
814 |
+
</port>
|
815 |
+
</output>
|
816 |
+
</layer>
|
817 |
+
<layer id="44" name="onnx::Conv_284" type="Const" version="opset1">
|
818 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="1547776" size="589824" />
|
819 |
+
<output>
|
820 |
+
<port id="0" precision="FP32" names="onnx::Conv_284">
|
821 |
+
<dim>128</dim>
|
822 |
+
<dim>128</dim>
|
823 |
+
<dim>3</dim>
|
824 |
+
<dim>3</dim>
|
825 |
+
</port>
|
826 |
+
</output>
|
827 |
+
</layer>
|
828 |
+
<layer id="45" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
829 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
830 |
+
<input>
|
831 |
+
<port id="0" precision="FP32">
|
832 |
+
<dim>1</dim>
|
833 |
+
<dim>128</dim>
|
834 |
+
<dim>32</dim>
|
835 |
+
<dim>32</dim>
|
836 |
+
</port>
|
837 |
+
<port id="1" precision="FP32">
|
838 |
+
<dim>128</dim>
|
839 |
+
<dim>128</dim>
|
840 |
+
<dim>3</dim>
|
841 |
+
<dim>3</dim>
|
842 |
+
</port>
|
843 |
+
</input>
|
844 |
+
<output>
|
845 |
+
<port id="2" precision="FP32">
|
846 |
+
<dim>1</dim>
|
847 |
+
<dim>128</dim>
|
848 |
+
<dim>32</dim>
|
849 |
+
<dim>32</dim>
|
850 |
+
</port>
|
851 |
+
</output>
|
852 |
+
</layer>
|
853 |
+
<layer id="46" name="Reshape_450" type="Const" version="opset1">
|
854 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2137600" size="512" />
|
855 |
+
<output>
|
856 |
+
<port id="0" precision="FP32">
|
857 |
+
<dim>1</dim>
|
858 |
+
<dim>128</dim>
|
859 |
+
<dim>1</dim>
|
860 |
+
<dim>1</dim>
|
861 |
+
</port>
|
862 |
+
</output>
|
863 |
+
</layer>
|
864 |
+
<layer id="47" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" type="Add" version="opset1">
|
865 |
+
<data auto_broadcast="numpy" />
|
866 |
+
<input>
|
867 |
+
<port id="0" precision="FP32">
|
868 |
+
<dim>1</dim>
|
869 |
+
<dim>128</dim>
|
870 |
+
<dim>32</dim>
|
871 |
+
<dim>32</dim>
|
872 |
+
</port>
|
873 |
+
<port id="1" precision="FP32">
|
874 |
+
<dim>1</dim>
|
875 |
+
<dim>128</dim>
|
876 |
+
<dim>1</dim>
|
877 |
+
<dim>1</dim>
|
878 |
+
</port>
|
879 |
+
</input>
|
880 |
+
<output>
|
881 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0">
|
882 |
+
<dim>1</dim>
|
883 |
+
<dim>128</dim>
|
884 |
+
<dim>32</dim>
|
885 |
+
<dim>32</dim>
|
886 |
+
</port>
|
887 |
+
</output>
|
888 |
+
</layer>
|
889 |
+
<layer id="48" name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" type="ReLU" version="opset1">
|
890 |
+
<input>
|
891 |
+
<port id="0" precision="FP32">
|
892 |
+
<dim>1</dim>
|
893 |
+
<dim>128</dim>
|
894 |
+
<dim>32</dim>
|
895 |
+
<dim>32</dim>
|
896 |
+
</port>
|
897 |
+
</input>
|
898 |
+
<output>
|
899 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0">
|
900 |
+
<dim>1</dim>
|
901 |
+
<dim>128</dim>
|
902 |
+
<dim>32</dim>
|
903 |
+
<dim>32</dim>
|
904 |
+
</port>
|
905 |
+
</output>
|
906 |
+
</layer>
|
907 |
+
<layer id="49" name="onnx::Conv_287" type="Const" version="opset1">
|
908 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="2138112" size="589824" />
|
909 |
+
<output>
|
910 |
+
<port id="0" precision="FP32" names="onnx::Conv_287">
|
911 |
+
<dim>128</dim>
|
912 |
+
<dim>128</dim>
|
913 |
+
<dim>3</dim>
|
914 |
+
<dim>3</dim>
|
915 |
+
</port>
|
916 |
+
</output>
|
917 |
+
</layer>
|
918 |
+
<layer id="50" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
919 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
920 |
+
<input>
|
921 |
+
<port id="0" precision="FP32">
|
922 |
+
<dim>1</dim>
|
923 |
+
<dim>128</dim>
|
924 |
+
<dim>32</dim>
|
925 |
+
<dim>32</dim>
|
926 |
+
</port>
|
927 |
+
<port id="1" precision="FP32">
|
928 |
+
<dim>128</dim>
|
929 |
+
<dim>128</dim>
|
930 |
+
<dim>3</dim>
|
931 |
+
<dim>3</dim>
|
932 |
+
</port>
|
933 |
+
</input>
|
934 |
+
<output>
|
935 |
+
<port id="2" precision="FP32">
|
936 |
+
<dim>1</dim>
|
937 |
+
<dim>128</dim>
|
938 |
+
<dim>32</dim>
|
939 |
+
<dim>32</dim>
|
940 |
+
</port>
|
941 |
+
</output>
|
942 |
+
</layer>
|
943 |
+
<layer id="51" name="Reshape_499" type="Const" version="opset1">
|
944 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2727936" size="512" />
|
945 |
+
<output>
|
946 |
+
<port id="0" precision="FP32">
|
947 |
+
<dim>1</dim>
|
948 |
+
<dim>128</dim>
|
949 |
+
<dim>1</dim>
|
950 |
+
<dim>1</dim>
|
951 |
+
</port>
|
952 |
+
</output>
|
953 |
+
</layer>
|
954 |
+
<layer id="52" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" type="Add" version="opset1">
|
955 |
+
<data auto_broadcast="numpy" />
|
956 |
+
<input>
|
957 |
+
<port id="0" precision="FP32">
|
958 |
+
<dim>1</dim>
|
959 |
+
<dim>128</dim>
|
960 |
+
<dim>32</dim>
|
961 |
+
<dim>32</dim>
|
962 |
+
</port>
|
963 |
+
<port id="1" precision="FP32">
|
964 |
+
<dim>1</dim>
|
965 |
+
<dim>128</dim>
|
966 |
+
<dim>1</dim>
|
967 |
+
<dim>1</dim>
|
968 |
+
</port>
|
969 |
+
</input>
|
970 |
+
<output>
|
971 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0">
|
972 |
+
<dim>1</dim>
|
973 |
+
<dim>128</dim>
|
974 |
+
<dim>32</dim>
|
975 |
+
<dim>32</dim>
|
976 |
+
</port>
|
977 |
+
</output>
|
978 |
+
</layer>
|
979 |
+
<layer id="53" name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" type="Add" version="opset1">
|
980 |
+
<data auto_broadcast="numpy" />
|
981 |
+
<input>
|
982 |
+
<port id="0" precision="FP32">
|
983 |
+
<dim>1</dim>
|
984 |
+
<dim>128</dim>
|
985 |
+
<dim>32</dim>
|
986 |
+
<dim>32</dim>
|
987 |
+
</port>
|
988 |
+
<port id="1" precision="FP32">
|
989 |
+
<dim>1</dim>
|
990 |
+
<dim>128</dim>
|
991 |
+
<dim>32</dim>
|
992 |
+
<dim>32</dim>
|
993 |
+
</port>
|
994 |
+
</input>
|
995 |
+
<output>
|
996 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0">
|
997 |
+
<dim>1</dim>
|
998 |
+
<dim>128</dim>
|
999 |
+
<dim>32</dim>
|
1000 |
+
<dim>32</dim>
|
1001 |
+
</port>
|
1002 |
+
</output>
|
1003 |
+
</layer>
|
1004 |
+
<layer id="54" name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" type="ReLU" version="opset1">
|
1005 |
+
<input>
|
1006 |
+
<port id="0" precision="FP32">
|
1007 |
+
<dim>1</dim>
|
1008 |
+
<dim>128</dim>
|
1009 |
+
<dim>32</dim>
|
1010 |
+
<dim>32</dim>
|
1011 |
+
</port>
|
1012 |
+
</input>
|
1013 |
+
<output>
|
1014 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0">
|
1015 |
+
<dim>1</dim>
|
1016 |
+
<dim>128</dim>
|
1017 |
+
<dim>32</dim>
|
1018 |
+
<dim>32</dim>
|
1019 |
+
</port>
|
1020 |
+
</output>
|
1021 |
+
</layer>
|
1022 |
+
<layer id="55" name="/Shape" type="ShapeOf" version="opset3">
|
1023 |
+
<data output_type="i64" />
|
1024 |
+
<input>
|
1025 |
+
<port id="0" precision="FP32">
|
1026 |
+
<dim>1</dim>
|
1027 |
+
<dim>128</dim>
|
1028 |
+
<dim>32</dim>
|
1029 |
+
<dim>32</dim>
|
1030 |
+
</port>
|
1031 |
+
</input>
|
1032 |
+
<output>
|
1033 |
+
<port id="1" precision="I64" names="/Shape_output_0">
|
1034 |
+
<dim>4</dim>
|
1035 |
+
</port>
|
1036 |
+
</output>
|
1037 |
+
</layer>
|
1038 |
+
<layer id="56" name="/Constant_1" type="Const" version="opset1">
|
1039 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1040 |
+
<output>
|
1041 |
+
<port id="0" precision="I64" names="/Constant_1_output_0">
|
1042 |
+
<dim>1</dim>
|
1043 |
+
</port>
|
1044 |
+
</output>
|
1045 |
+
</layer>
|
1046 |
+
<layer id="57" name="/Constant_2" type="Const" version="opset1">
|
1047 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1048 |
+
<output>
|
1049 |
+
<port id="0" precision="I64" names="/Constant_2_output_0">
|
1050 |
+
<dim>1</dim>
|
1051 |
+
</port>
|
1052 |
+
</output>
|
1053 |
+
</layer>
|
1054 |
+
<layer id="58" name="Broadcast_781" type="Const" version="opset1">
|
1055 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1056 |
+
<output>
|
1057 |
+
<port id="0" precision="I64">
|
1058 |
+
<dim>1</dim>
|
1059 |
+
</port>
|
1060 |
+
</output>
|
1061 |
+
</layer>
|
1062 |
+
<layer id="59" name="/Slice" type="StridedSlice" version="opset1">
|
1063 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1064 |
+
<input>
|
1065 |
+
<port id="0" precision="I64">
|
1066 |
+
<dim>4</dim>
|
1067 |
+
</port>
|
1068 |
+
<port id="1" precision="I64">
|
1069 |
+
<dim>1</dim>
|
1070 |
+
</port>
|
1071 |
+
<port id="2" precision="I64">
|
1072 |
+
<dim>1</dim>
|
1073 |
+
</port>
|
1074 |
+
<port id="3" precision="I64">
|
1075 |
+
<dim>1</dim>
|
1076 |
+
</port>
|
1077 |
+
</input>
|
1078 |
+
<output>
|
1079 |
+
<port id="4" precision="I64" names="/Slice_output_0">
|
1080 |
+
<dim>2</dim>
|
1081 |
+
</port>
|
1082 |
+
</output>
|
1083 |
+
</layer>
|
1084 |
+
<layer id="60" name="/Constant_3" type="Const" version="opset1">
|
1085 |
+
<data element_type="i64" shape="2" offset="2728472" size="16" />
|
1086 |
+
<output>
|
1087 |
+
<port id="0" precision="I64" names="/Constant_3_output_0">
|
1088 |
+
<dim>2</dim>
|
1089 |
+
</port>
|
1090 |
+
</output>
|
1091 |
+
</layer>
|
1092 |
+
<layer id="61" name="/Concat" type="Concat" version="opset1">
|
1093 |
+
<data axis="0" />
|
1094 |
+
<input>
|
1095 |
+
<port id="0" precision="I64">
|
1096 |
+
<dim>2</dim>
|
1097 |
+
</port>
|
1098 |
+
<port id="1" precision="I64">
|
1099 |
+
<dim>2</dim>
|
1100 |
+
</port>
|
1101 |
+
</input>
|
1102 |
+
<output>
|
1103 |
+
<port id="2" precision="I64" names="/Concat_output_0">
|
1104 |
+
<dim>4</dim>
|
1105 |
+
</port>
|
1106 |
+
</output>
|
1107 |
+
</layer>
|
1108 |
+
<layer id="62" name="Convert_804" type="Convert" version="opset1">
|
1109 |
+
<data destination_type="f32" />
|
1110 |
+
<input>
|
1111 |
+
<port id="0" precision="I64">
|
1112 |
+
<dim>4</dim>
|
1113 |
+
</port>
|
1114 |
+
</input>
|
1115 |
+
<output>
|
1116 |
+
<port id="1" precision="FP32">
|
1117 |
+
<dim>4</dim>
|
1118 |
+
</port>
|
1119 |
+
</output>
|
1120 |
+
</layer>
|
1121 |
+
<layer id="63" name="Convert_803" type="Convert" version="opset1">
|
1122 |
+
<data destination_type="f32" />
|
1123 |
+
<input>
|
1124 |
+
<port id="0" precision="I64">
|
1125 |
+
<dim>4</dim>
|
1126 |
+
</port>
|
1127 |
+
</input>
|
1128 |
+
<output>
|
1129 |
+
<port id="1" precision="FP32">
|
1130 |
+
<dim>4</dim>
|
1131 |
+
</port>
|
1132 |
+
</output>
|
1133 |
+
</layer>
|
1134 |
+
<layer id="64" name="Divide_805" type="Divide" version="opset1">
|
1135 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1136 |
+
<input>
|
1137 |
+
<port id="0" precision="FP32">
|
1138 |
+
<dim>4</dim>
|
1139 |
+
</port>
|
1140 |
+
<port id="1" precision="FP32">
|
1141 |
+
<dim>4</dim>
|
1142 |
+
</port>
|
1143 |
+
</input>
|
1144 |
+
<output>
|
1145 |
+
<port id="2" precision="FP32">
|
1146 |
+
<dim>4</dim>
|
1147 |
+
</port>
|
1148 |
+
</output>
|
1149 |
+
</layer>
|
1150 |
+
<layer id="65" name="Constant_6582" type="Const" version="opset1">
|
1151 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1152 |
+
<output>
|
1153 |
+
<port id="0" precision="FP32">
|
1154 |
+
<dim>1</dim>
|
1155 |
+
</port>
|
1156 |
+
</output>
|
1157 |
+
</layer>
|
1158 |
+
<layer id="66" name="Add_807" type="Add" version="opset1">
|
1159 |
+
<data auto_broadcast="numpy" />
|
1160 |
+
<input>
|
1161 |
+
<port id="0" precision="FP32">
|
1162 |
+
<dim>4</dim>
|
1163 |
+
</port>
|
1164 |
+
<port id="1" precision="FP32">
|
1165 |
+
<dim>1</dim>
|
1166 |
+
</port>
|
1167 |
+
</input>
|
1168 |
+
<output>
|
1169 |
+
<port id="2" precision="FP32">
|
1170 |
+
<dim>4</dim>
|
1171 |
+
</port>
|
1172 |
+
</output>
|
1173 |
+
</layer>
|
1174 |
+
<layer id="67" name="/Resize" type="Interpolate" version="opset4">
|
1175 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1176 |
+
<input>
|
1177 |
+
<port id="0" precision="FP32">
|
1178 |
+
<dim>1</dim>
|
1179 |
+
<dim>128</dim>
|
1180 |
+
<dim>32</dim>
|
1181 |
+
<dim>32</dim>
|
1182 |
+
</port>
|
1183 |
+
<port id="1" precision="I64">
|
1184 |
+
<dim>4</dim>
|
1185 |
+
</port>
|
1186 |
+
<port id="2" precision="FP32">
|
1187 |
+
<dim>4</dim>
|
1188 |
+
</port>
|
1189 |
+
</input>
|
1190 |
+
<output>
|
1191 |
+
<port id="3" precision="FP32" names="/Resize_output_0">
|
1192 |
+
<dim>1</dim>
|
1193 |
+
<dim>128</dim>
|
1194 |
+
<dim>64</dim>
|
1195 |
+
<dim>64</dim>
|
1196 |
+
</port>
|
1197 |
+
</output>
|
1198 |
+
</layer>
|
1199 |
+
<layer id="68" name="/Concat_1" type="Concat" version="opset1">
|
1200 |
+
<data axis="1" />
|
1201 |
+
<input>
|
1202 |
+
<port id="0" precision="FP32">
|
1203 |
+
<dim>1</dim>
|
1204 |
+
<dim>64</dim>
|
1205 |
+
<dim>64</dim>
|
1206 |
+
<dim>64</dim>
|
1207 |
+
</port>
|
1208 |
+
<port id="1" precision="FP32">
|
1209 |
+
<dim>1</dim>
|
1210 |
+
<dim>128</dim>
|
1211 |
+
<dim>64</dim>
|
1212 |
+
<dim>64</dim>
|
1213 |
+
</port>
|
1214 |
+
</input>
|
1215 |
+
<output>
|
1216 |
+
<port id="2" precision="FP32" names="/Concat_1_output_0">
|
1217 |
+
<dim>1</dim>
|
1218 |
+
<dim>192</dim>
|
1219 |
+
<dim>64</dim>
|
1220 |
+
<dim>64</dim>
|
1221 |
+
</port>
|
1222 |
+
</output>
|
1223 |
+
</layer>
|
1224 |
+
<layer id="69" name="onnx::Conv_290" type="Const" version="opset1">
|
1225 |
+
<data element_type="f32" shape="256, 128, 3, 3" offset="2728492" size="1179648" />
|
1226 |
+
<output>
|
1227 |
+
<port id="0" precision="FP32" names="onnx::Conv_290">
|
1228 |
+
<dim>256</dim>
|
1229 |
+
<dim>128</dim>
|
1230 |
+
<dim>3</dim>
|
1231 |
+
<dim>3</dim>
|
1232 |
+
</port>
|
1233 |
+
</output>
|
1234 |
+
</layer>
|
1235 |
+
<layer id="70" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1236 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1237 |
+
<input>
|
1238 |
+
<port id="0" precision="FP32">
|
1239 |
+
<dim>1</dim>
|
1240 |
+
<dim>128</dim>
|
1241 |
+
<dim>32</dim>
|
1242 |
+
<dim>32</dim>
|
1243 |
+
</port>
|
1244 |
+
<port id="1" precision="FP32">
|
1245 |
+
<dim>256</dim>
|
1246 |
+
<dim>128</dim>
|
1247 |
+
<dim>3</dim>
|
1248 |
+
<dim>3</dim>
|
1249 |
+
</port>
|
1250 |
+
</input>
|
1251 |
+
<output>
|
1252 |
+
<port id="2" precision="FP32">
|
1253 |
+
<dim>1</dim>
|
1254 |
+
<dim>256</dim>
|
1255 |
+
<dim>16</dim>
|
1256 |
+
<dim>16</dim>
|
1257 |
+
</port>
|
1258 |
+
</output>
|
1259 |
+
</layer>
|
1260 |
+
<layer id="71" name="Reshape_549" type="Const" version="opset1">
|
1261 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="3908140" size="1024" />
|
1262 |
+
<output>
|
1263 |
+
<port id="0" precision="FP32">
|
1264 |
+
<dim>1</dim>
|
1265 |
+
<dim>256</dim>
|
1266 |
+
<dim>1</dim>
|
1267 |
+
<dim>1</dim>
|
1268 |
+
</port>
|
1269 |
+
</output>
|
1270 |
+
</layer>
|
1271 |
+
<layer id="72" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" type="Add" version="opset1">
|
1272 |
+
<data auto_broadcast="numpy" />
|
1273 |
+
<input>
|
1274 |
+
<port id="0" precision="FP32">
|
1275 |
+
<dim>1</dim>
|
1276 |
+
<dim>256</dim>
|
1277 |
+
<dim>16</dim>
|
1278 |
+
<dim>16</dim>
|
1279 |
+
</port>
|
1280 |
+
<port id="1" precision="FP32">
|
1281 |
+
<dim>1</dim>
|
1282 |
+
<dim>256</dim>
|
1283 |
+
<dim>1</dim>
|
1284 |
+
<dim>1</dim>
|
1285 |
+
</port>
|
1286 |
+
</input>
|
1287 |
+
<output>
|
1288 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0">
|
1289 |
+
<dim>1</dim>
|
1290 |
+
<dim>256</dim>
|
1291 |
+
<dim>16</dim>
|
1292 |
+
<dim>16</dim>
|
1293 |
+
</port>
|
1294 |
+
</output>
|
1295 |
+
</layer>
|
1296 |
+
<layer id="73" name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" type="ReLU" version="opset1">
|
1297 |
+
<input>
|
1298 |
+
<port id="0" precision="FP32">
|
1299 |
+
<dim>1</dim>
|
1300 |
+
<dim>256</dim>
|
1301 |
+
<dim>16</dim>
|
1302 |
+
<dim>16</dim>
|
1303 |
+
</port>
|
1304 |
+
</input>
|
1305 |
+
<output>
|
1306 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0">
|
1307 |
+
<dim>1</dim>
|
1308 |
+
<dim>256</dim>
|
1309 |
+
<dim>16</dim>
|
1310 |
+
<dim>16</dim>
|
1311 |
+
</port>
|
1312 |
+
</output>
|
1313 |
+
</layer>
|
1314 |
+
<layer id="74" name="onnx::Conv_293" type="Const" version="opset1">
|
1315 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="3909164" size="2359296" />
|
1316 |
+
<output>
|
1317 |
+
<port id="0" precision="FP32" names="onnx::Conv_293">
|
1318 |
+
<dim>256</dim>
|
1319 |
+
<dim>256</dim>
|
1320 |
+
<dim>3</dim>
|
1321 |
+
<dim>3</dim>
|
1322 |
+
</port>
|
1323 |
+
</output>
|
1324 |
+
</layer>
|
1325 |
+
<layer id="75" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1326 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1327 |
+
<input>
|
1328 |
+
<port id="0" precision="FP32">
|
1329 |
+
<dim>1</dim>
|
1330 |
+
<dim>256</dim>
|
1331 |
+
<dim>16</dim>
|
1332 |
+
<dim>16</dim>
|
1333 |
+
</port>
|
1334 |
+
<port id="1" precision="FP32">
|
1335 |
+
<dim>256</dim>
|
1336 |
+
<dim>256</dim>
|
1337 |
+
<dim>3</dim>
|
1338 |
+
<dim>3</dim>
|
1339 |
+
</port>
|
1340 |
+
</input>
|
1341 |
+
<output>
|
1342 |
+
<port id="2" precision="FP32">
|
1343 |
+
<dim>1</dim>
|
1344 |
+
<dim>256</dim>
|
1345 |
+
<dim>16</dim>
|
1346 |
+
<dim>16</dim>
|
1347 |
+
</port>
|
1348 |
+
</output>
|
1349 |
+
</layer>
|
1350 |
+
<layer id="76" name="Reshape_598" type="Const" version="opset1">
|
1351 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6268460" size="1024" />
|
1352 |
+
<output>
|
1353 |
+
<port id="0" precision="FP32">
|
1354 |
+
<dim>1</dim>
|
1355 |
+
<dim>256</dim>
|
1356 |
+
<dim>1</dim>
|
1357 |
+
<dim>1</dim>
|
1358 |
+
</port>
|
1359 |
+
</output>
|
1360 |
+
</layer>
|
1361 |
+
<layer id="77" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" type="Add" version="opset1">
|
1362 |
+
<data auto_broadcast="numpy" />
|
1363 |
+
<input>
|
1364 |
+
<port id="0" precision="FP32">
|
1365 |
+
<dim>1</dim>
|
1366 |
+
<dim>256</dim>
|
1367 |
+
<dim>16</dim>
|
1368 |
+
<dim>16</dim>
|
1369 |
+
</port>
|
1370 |
+
<port id="1" precision="FP32">
|
1371 |
+
<dim>1</dim>
|
1372 |
+
<dim>256</dim>
|
1373 |
+
<dim>1</dim>
|
1374 |
+
<dim>1</dim>
|
1375 |
+
</port>
|
1376 |
+
</input>
|
1377 |
+
<output>
|
1378 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0">
|
1379 |
+
<dim>1</dim>
|
1380 |
+
<dim>256</dim>
|
1381 |
+
<dim>16</dim>
|
1382 |
+
<dim>16</dim>
|
1383 |
+
</port>
|
1384 |
+
</output>
|
1385 |
+
</layer>
|
1386 |
+
<layer id="78" name="onnx::Conv_296" type="Const" version="opset1">
|
1387 |
+
<data element_type="f32" shape="256, 128, 1, 1" offset="6269484" size="131072" />
|
1388 |
+
<output>
|
1389 |
+
<port id="0" precision="FP32" names="onnx::Conv_296">
|
1390 |
+
<dim>256</dim>
|
1391 |
+
<dim>128</dim>
|
1392 |
+
<dim>1</dim>
|
1393 |
+
<dim>1</dim>
|
1394 |
+
</port>
|
1395 |
+
</output>
|
1396 |
+
</layer>
|
1397 |
+
<layer id="79" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1398 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
1399 |
+
<input>
|
1400 |
+
<port id="0" precision="FP32">
|
1401 |
+
<dim>1</dim>
|
1402 |
+
<dim>128</dim>
|
1403 |
+
<dim>32</dim>
|
1404 |
+
<dim>32</dim>
|
1405 |
+
</port>
|
1406 |
+
<port id="1" precision="FP32">
|
1407 |
+
<dim>256</dim>
|
1408 |
+
<dim>128</dim>
|
1409 |
+
<dim>1</dim>
|
1410 |
+
<dim>1</dim>
|
1411 |
+
</port>
|
1412 |
+
</input>
|
1413 |
+
<output>
|
1414 |
+
<port id="2" precision="FP32">
|
1415 |
+
<dim>1</dim>
|
1416 |
+
<dim>256</dim>
|
1417 |
+
<dim>16</dim>
|
1418 |
+
<dim>16</dim>
|
1419 |
+
</port>
|
1420 |
+
</output>
|
1421 |
+
</layer>
|
1422 |
+
<layer id="80" name="Reshape_646" type="Const" version="opset1">
|
1423 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6400556" size="1024" />
|
1424 |
+
<output>
|
1425 |
+
<port id="0" precision="FP32">
|
1426 |
+
<dim>1</dim>
|
1427 |
+
<dim>256</dim>
|
1428 |
+
<dim>1</dim>
|
1429 |
+
<dim>1</dim>
|
1430 |
+
</port>
|
1431 |
+
</output>
|
1432 |
+
</layer>
|
1433 |
+
<layer id="81" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
1434 |
+
<data auto_broadcast="numpy" />
|
1435 |
+
<input>
|
1436 |
+
<port id="0" precision="FP32">
|
1437 |
+
<dim>1</dim>
|
1438 |
+
<dim>256</dim>
|
1439 |
+
<dim>16</dim>
|
1440 |
+
<dim>16</dim>
|
1441 |
+
</port>
|
1442 |
+
<port id="1" precision="FP32">
|
1443 |
+
<dim>1</dim>
|
1444 |
+
<dim>256</dim>
|
1445 |
+
<dim>1</dim>
|
1446 |
+
<dim>1</dim>
|
1447 |
+
</port>
|
1448 |
+
</input>
|
1449 |
+
<output>
|
1450 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0">
|
1451 |
+
<dim>1</dim>
|
1452 |
+
<dim>256</dim>
|
1453 |
+
<dim>16</dim>
|
1454 |
+
<dim>16</dim>
|
1455 |
+
</port>
|
1456 |
+
</output>
|
1457 |
+
</layer>
|
1458 |
+
<layer id="82" name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" type="Add" version="opset1">
|
1459 |
+
<data auto_broadcast="numpy" />
|
1460 |
+
<input>
|
1461 |
+
<port id="0" precision="FP32">
|
1462 |
+
<dim>1</dim>
|
1463 |
+
<dim>256</dim>
|
1464 |
+
<dim>16</dim>
|
1465 |
+
<dim>16</dim>
|
1466 |
+
</port>
|
1467 |
+
<port id="1" precision="FP32">
|
1468 |
+
<dim>1</dim>
|
1469 |
+
<dim>256</dim>
|
1470 |
+
<dim>16</dim>
|
1471 |
+
<dim>16</dim>
|
1472 |
+
</port>
|
1473 |
+
</input>
|
1474 |
+
<output>
|
1475 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0">
|
1476 |
+
<dim>1</dim>
|
1477 |
+
<dim>256</dim>
|
1478 |
+
<dim>16</dim>
|
1479 |
+
<dim>16</dim>
|
1480 |
+
</port>
|
1481 |
+
</output>
|
1482 |
+
</layer>
|
1483 |
+
<layer id="83" name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" type="ReLU" version="opset1">
|
1484 |
+
<input>
|
1485 |
+
<port id="0" precision="FP32">
|
1486 |
+
<dim>1</dim>
|
1487 |
+
<dim>256</dim>
|
1488 |
+
<dim>16</dim>
|
1489 |
+
<dim>16</dim>
|
1490 |
+
</port>
|
1491 |
+
</input>
|
1492 |
+
<output>
|
1493 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0">
|
1494 |
+
<dim>1</dim>
|
1495 |
+
<dim>256</dim>
|
1496 |
+
<dim>16</dim>
|
1497 |
+
<dim>16</dim>
|
1498 |
+
</port>
|
1499 |
+
</output>
|
1500 |
+
</layer>
|
1501 |
+
<layer id="84" name="onnx::Conv_299" type="Const" version="opset1">
|
1502 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="6401580" size="2359296" />
|
1503 |
+
<output>
|
1504 |
+
<port id="0" precision="FP32" names="onnx::Conv_299">
|
1505 |
+
<dim>256</dim>
|
1506 |
+
<dim>256</dim>
|
1507 |
+
<dim>3</dim>
|
1508 |
+
<dim>3</dim>
|
1509 |
+
</port>
|
1510 |
+
</output>
|
1511 |
+
</layer>
|
1512 |
+
<layer id="85" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1513 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1514 |
+
<input>
|
1515 |
+
<port id="0" precision="FP32">
|
1516 |
+
<dim>1</dim>
|
1517 |
+
<dim>256</dim>
|
1518 |
+
<dim>16</dim>
|
1519 |
+
<dim>16</dim>
|
1520 |
+
</port>
|
1521 |
+
<port id="1" precision="FP32">
|
1522 |
+
<dim>256</dim>
|
1523 |
+
<dim>256</dim>
|
1524 |
+
<dim>3</dim>
|
1525 |
+
<dim>3</dim>
|
1526 |
+
</port>
|
1527 |
+
</input>
|
1528 |
+
<output>
|
1529 |
+
<port id="2" precision="FP32">
|
1530 |
+
<dim>1</dim>
|
1531 |
+
<dim>256</dim>
|
1532 |
+
<dim>16</dim>
|
1533 |
+
<dim>16</dim>
|
1534 |
+
</port>
|
1535 |
+
</output>
|
1536 |
+
</layer>
|
1537 |
+
<layer id="86" name="Reshape_696" type="Const" version="opset1">
|
1538 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="8760876" size="1024" />
|
1539 |
+
<output>
|
1540 |
+
<port id="0" precision="FP32">
|
1541 |
+
<dim>1</dim>
|
1542 |
+
<dim>256</dim>
|
1543 |
+
<dim>1</dim>
|
1544 |
+
<dim>1</dim>
|
1545 |
+
</port>
|
1546 |
+
</output>
|
1547 |
+
</layer>
|
1548 |
+
<layer id="87" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" type="Add" version="opset1">
|
1549 |
+
<data auto_broadcast="numpy" />
|
1550 |
+
<input>
|
1551 |
+
<port id="0" precision="FP32">
|
1552 |
+
<dim>1</dim>
|
1553 |
+
<dim>256</dim>
|
1554 |
+
<dim>16</dim>
|
1555 |
+
<dim>16</dim>
|
1556 |
+
</port>
|
1557 |
+
<port id="1" precision="FP32">
|
1558 |
+
<dim>1</dim>
|
1559 |
+
<dim>256</dim>
|
1560 |
+
<dim>1</dim>
|
1561 |
+
<dim>1</dim>
|
1562 |
+
</port>
|
1563 |
+
</input>
|
1564 |
+
<output>
|
1565 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0">
|
1566 |
+
<dim>1</dim>
|
1567 |
+
<dim>256</dim>
|
1568 |
+
<dim>16</dim>
|
1569 |
+
<dim>16</dim>
|
1570 |
+
</port>
|
1571 |
+
</output>
|
1572 |
+
</layer>
|
1573 |
+
<layer id="88" name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" type="ReLU" version="opset1">
|
1574 |
+
<input>
|
1575 |
+
<port id="0" precision="FP32">
|
1576 |
+
<dim>1</dim>
|
1577 |
+
<dim>256</dim>
|
1578 |
+
<dim>16</dim>
|
1579 |
+
<dim>16</dim>
|
1580 |
+
</port>
|
1581 |
+
</input>
|
1582 |
+
<output>
|
1583 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0">
|
1584 |
+
<dim>1</dim>
|
1585 |
+
<dim>256</dim>
|
1586 |
+
<dim>16</dim>
|
1587 |
+
<dim>16</dim>
|
1588 |
+
</port>
|
1589 |
+
</output>
|
1590 |
+
</layer>
|
1591 |
+
<layer id="89" name="onnx::Conv_302" type="Const" version="opset1">
|
1592 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="8761900" size="2359296" />
|
1593 |
+
<output>
|
1594 |
+
<port id="0" precision="FP32" names="onnx::Conv_302">
|
1595 |
+
<dim>256</dim>
|
1596 |
+
<dim>256</dim>
|
1597 |
+
<dim>3</dim>
|
1598 |
+
<dim>3</dim>
|
1599 |
+
</port>
|
1600 |
+
</output>
|
1601 |
+
</layer>
|
1602 |
+
<layer id="90" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1603 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1604 |
+
<input>
|
1605 |
+
<port id="0" precision="FP32">
|
1606 |
+
<dim>1</dim>
|
1607 |
+
<dim>256</dim>
|
1608 |
+
<dim>16</dim>
|
1609 |
+
<dim>16</dim>
|
1610 |
+
</port>
|
1611 |
+
<port id="1" precision="FP32">
|
1612 |
+
<dim>256</dim>
|
1613 |
+
<dim>256</dim>
|
1614 |
+
<dim>3</dim>
|
1615 |
+
<dim>3</dim>
|
1616 |
+
</port>
|
1617 |
+
</input>
|
1618 |
+
<output>
|
1619 |
+
<port id="2" precision="FP32">
|
1620 |
+
<dim>1</dim>
|
1621 |
+
<dim>256</dim>
|
1622 |
+
<dim>16</dim>
|
1623 |
+
<dim>16</dim>
|
1624 |
+
</port>
|
1625 |
+
</output>
|
1626 |
+
</layer>
|
1627 |
+
<layer id="91" name="Reshape_745" type="Const" version="opset1">
|
1628 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="11121196" size="1024" />
|
1629 |
+
<output>
|
1630 |
+
<port id="0" precision="FP32">
|
1631 |
+
<dim>1</dim>
|
1632 |
+
<dim>256</dim>
|
1633 |
+
<dim>1</dim>
|
1634 |
+
<dim>1</dim>
|
1635 |
+
</port>
|
1636 |
+
</output>
|
1637 |
+
</layer>
|
1638 |
+
<layer id="92" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" type="Add" version="opset1">
|
1639 |
+
<data auto_broadcast="numpy" />
|
1640 |
+
<input>
|
1641 |
+
<port id="0" precision="FP32">
|
1642 |
+
<dim>1</dim>
|
1643 |
+
<dim>256</dim>
|
1644 |
+
<dim>16</dim>
|
1645 |
+
<dim>16</dim>
|
1646 |
+
</port>
|
1647 |
+
<port id="1" precision="FP32">
|
1648 |
+
<dim>1</dim>
|
1649 |
+
<dim>256</dim>
|
1650 |
+
<dim>1</dim>
|
1651 |
+
<dim>1</dim>
|
1652 |
+
</port>
|
1653 |
+
</input>
|
1654 |
+
<output>
|
1655 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0">
|
1656 |
+
<dim>1</dim>
|
1657 |
+
<dim>256</dim>
|
1658 |
+
<dim>16</dim>
|
1659 |
+
<dim>16</dim>
|
1660 |
+
</port>
|
1661 |
+
</output>
|
1662 |
+
</layer>
|
1663 |
+
<layer id="93" name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" type="Add" version="opset1">
|
1664 |
+
<data auto_broadcast="numpy" />
|
1665 |
+
<input>
|
1666 |
+
<port id="0" precision="FP32">
|
1667 |
+
<dim>1</dim>
|
1668 |
+
<dim>256</dim>
|
1669 |
+
<dim>16</dim>
|
1670 |
+
<dim>16</dim>
|
1671 |
+
</port>
|
1672 |
+
<port id="1" precision="FP32">
|
1673 |
+
<dim>1</dim>
|
1674 |
+
<dim>256</dim>
|
1675 |
+
<dim>16</dim>
|
1676 |
+
<dim>16</dim>
|
1677 |
+
</port>
|
1678 |
+
</input>
|
1679 |
+
<output>
|
1680 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0">
|
1681 |
+
<dim>1</dim>
|
1682 |
+
<dim>256</dim>
|
1683 |
+
<dim>16</dim>
|
1684 |
+
<dim>16</dim>
|
1685 |
+
</port>
|
1686 |
+
</output>
|
1687 |
+
</layer>
|
1688 |
+
<layer id="94" name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" type="ReLU" version="opset1">
|
1689 |
+
<input>
|
1690 |
+
<port id="0" precision="FP32">
|
1691 |
+
<dim>1</dim>
|
1692 |
+
<dim>256</dim>
|
1693 |
+
<dim>16</dim>
|
1694 |
+
<dim>16</dim>
|
1695 |
+
</port>
|
1696 |
+
</input>
|
1697 |
+
<output>
|
1698 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0">
|
1699 |
+
<dim>1</dim>
|
1700 |
+
<dim>256</dim>
|
1701 |
+
<dim>16</dim>
|
1702 |
+
<dim>16</dim>
|
1703 |
+
</port>
|
1704 |
+
</output>
|
1705 |
+
</layer>
|
1706 |
+
<layer id="95" name="/Shape_3" type="ShapeOf" version="opset3">
|
1707 |
+
<data output_type="i64" />
|
1708 |
+
<input>
|
1709 |
+
<port id="0" precision="FP32">
|
1710 |
+
<dim>1</dim>
|
1711 |
+
<dim>256</dim>
|
1712 |
+
<dim>16</dim>
|
1713 |
+
<dim>16</dim>
|
1714 |
+
</port>
|
1715 |
+
</input>
|
1716 |
+
<output>
|
1717 |
+
<port id="1" precision="I64" names="/Shape_3_output_0">
|
1718 |
+
<dim>4</dim>
|
1719 |
+
</port>
|
1720 |
+
</output>
|
1721 |
+
</layer>
|
1722 |
+
<layer id="96" name="/Constant_9" type="Const" version="opset1">
|
1723 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1724 |
+
<output>
|
1725 |
+
<port id="0" precision="I64" names="/Constant_9_output_0">
|
1726 |
+
<dim>1</dim>
|
1727 |
+
</port>
|
1728 |
+
</output>
|
1729 |
+
</layer>
|
1730 |
+
<layer id="97" name="/Constant_10" type="Const" version="opset1">
|
1731 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1732 |
+
<output>
|
1733 |
+
<port id="0" precision="I64" names="/Constant_10_output_0">
|
1734 |
+
<dim>1</dim>
|
1735 |
+
</port>
|
1736 |
+
</output>
|
1737 |
+
</layer>
|
1738 |
+
<layer id="98" name="Broadcast_861" type="Const" version="opset1">
|
1739 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1740 |
+
<output>
|
1741 |
+
<port id="0" precision="I64">
|
1742 |
+
<dim>1</dim>
|
1743 |
+
</port>
|
1744 |
+
</output>
|
1745 |
+
</layer>
|
1746 |
+
<layer id="99" name="/Slice_1" type="StridedSlice" version="opset1">
|
1747 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1748 |
+
<input>
|
1749 |
+
<port id="0" precision="I64">
|
1750 |
+
<dim>4</dim>
|
1751 |
+
</port>
|
1752 |
+
<port id="1" precision="I64">
|
1753 |
+
<dim>1</dim>
|
1754 |
+
</port>
|
1755 |
+
<port id="2" precision="I64">
|
1756 |
+
<dim>1</dim>
|
1757 |
+
</port>
|
1758 |
+
<port id="3" precision="I64">
|
1759 |
+
<dim>1</dim>
|
1760 |
+
</port>
|
1761 |
+
</input>
|
1762 |
+
<output>
|
1763 |
+
<port id="4" precision="I64" names="/Slice_1_output_0">
|
1764 |
+
<dim>2</dim>
|
1765 |
+
</port>
|
1766 |
+
</output>
|
1767 |
+
</layer>
|
1768 |
+
<layer id="100" name="/Shape_1" type="ShapeOf" version="opset3">
|
1769 |
+
<data output_type="i64" />
|
1770 |
+
<input>
|
1771 |
+
<port id="0" precision="FP32">
|
1772 |
+
<dim>1</dim>
|
1773 |
+
<dim>192</dim>
|
1774 |
+
<dim>64</dim>
|
1775 |
+
<dim>64</dim>
|
1776 |
+
</port>
|
1777 |
+
</input>
|
1778 |
+
<output>
|
1779 |
+
<port id="1" precision="I64" names="/Shape_1_output_0,/Shape_2_output_0">
|
1780 |
+
<dim>4</dim>
|
1781 |
+
</port>
|
1782 |
+
</output>
|
1783 |
+
</layer>
|
1784 |
+
<layer id="101" name="Constant_6090" type="Const" version="opset1">
|
1785 |
+
<data element_type="i64" shape="2" offset="11122220" size="16" />
|
1786 |
+
<output>
|
1787 |
+
<port id="0" precision="I64">
|
1788 |
+
<dim>2</dim>
|
1789 |
+
</port>
|
1790 |
+
</output>
|
1791 |
+
</layer>
|
1792 |
+
<layer id="102" name="Constant_6091" type="Const" version="opset1">
|
1793 |
+
<data element_type="i64" shape="" offset="2728448" size="8" />
|
1794 |
+
<output>
|
1795 |
+
<port id="0" precision="I64" />
|
1796 |
+
</output>
|
1797 |
+
</layer>
|
1798 |
+
<layer id="103" name="Gather_6092" type="Gather" version="opset8">
|
1799 |
+
<data batch_dims="0" />
|
1800 |
+
<input>
|
1801 |
+
<port id="0" precision="I64">
|
1802 |
+
<dim>4</dim>
|
1803 |
+
</port>
|
1804 |
+
<port id="1" precision="I64">
|
1805 |
+
<dim>2</dim>
|
1806 |
+
</port>
|
1807 |
+
<port id="2" precision="I64" />
|
1808 |
+
</input>
|
1809 |
+
<output>
|
1810 |
+
<port id="3" precision="I64" names="/Cast_output_0,/Concat_2_output_0">
|
1811 |
+
<dim>2</dim>
|
1812 |
+
</port>
|
1813 |
+
</output>
|
1814 |
+
</layer>
|
1815 |
+
<layer id="104" name="/Concat_3" type="Concat" version="opset1">
|
1816 |
+
<data axis="0" />
|
1817 |
+
<input>
|
1818 |
+
<port id="0" precision="I64">
|
1819 |
+
<dim>2</dim>
|
1820 |
+
</port>
|
1821 |
+
<port id="1" precision="I64">
|
1822 |
+
<dim>2</dim>
|
1823 |
+
</port>
|
1824 |
+
</input>
|
1825 |
+
<output>
|
1826 |
+
<port id="2" precision="I64" names="/Concat_3_output_0">
|
1827 |
+
<dim>4</dim>
|
1828 |
+
</port>
|
1829 |
+
</output>
|
1830 |
+
</layer>
|
1831 |
+
<layer id="105" name="Convert_884" type="Convert" version="opset1">
|
1832 |
+
<data destination_type="f32" />
|
1833 |
+
<input>
|
1834 |
+
<port id="0" precision="I64">
|
1835 |
+
<dim>4</dim>
|
1836 |
+
</port>
|
1837 |
+
</input>
|
1838 |
+
<output>
|
1839 |
+
<port id="1" precision="FP32">
|
1840 |
+
<dim>4</dim>
|
1841 |
+
</port>
|
1842 |
+
</output>
|
1843 |
+
</layer>
|
1844 |
+
<layer id="106" name="Convert_883" type="Convert" version="opset1">
|
1845 |
+
<data destination_type="f32" />
|
1846 |
+
<input>
|
1847 |
+
<port id="0" precision="I64">
|
1848 |
+
<dim>4</dim>
|
1849 |
+
</port>
|
1850 |
+
</input>
|
1851 |
+
<output>
|
1852 |
+
<port id="1" precision="FP32">
|
1853 |
+
<dim>4</dim>
|
1854 |
+
</port>
|
1855 |
+
</output>
|
1856 |
+
</layer>
|
1857 |
+
<layer id="107" name="Divide_885" type="Divide" version="opset1">
|
1858 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1859 |
+
<input>
|
1860 |
+
<port id="0" precision="FP32">
|
1861 |
+
<dim>4</dim>
|
1862 |
+
</port>
|
1863 |
+
<port id="1" precision="FP32">
|
1864 |
+
<dim>4</dim>
|
1865 |
+
</port>
|
1866 |
+
</input>
|
1867 |
+
<output>
|
1868 |
+
<port id="2" precision="FP32">
|
1869 |
+
<dim>4</dim>
|
1870 |
+
</port>
|
1871 |
+
</output>
|
1872 |
+
</layer>
|
1873 |
+
<layer id="108" name="Constant_6583" type="Const" version="opset1">
|
1874 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1875 |
+
<output>
|
1876 |
+
<port id="0" precision="FP32">
|
1877 |
+
<dim>1</dim>
|
1878 |
+
</port>
|
1879 |
+
</output>
|
1880 |
+
</layer>
|
1881 |
+
<layer id="109" name="Add_887" type="Add" version="opset1">
|
1882 |
+
<data auto_broadcast="numpy" />
|
1883 |
+
<input>
|
1884 |
+
<port id="0" precision="FP32">
|
1885 |
+
<dim>4</dim>
|
1886 |
+
</port>
|
1887 |
+
<port id="1" precision="FP32">
|
1888 |
+
<dim>1</dim>
|
1889 |
+
</port>
|
1890 |
+
</input>
|
1891 |
+
<output>
|
1892 |
+
<port id="2" precision="FP32">
|
1893 |
+
<dim>4</dim>
|
1894 |
+
</port>
|
1895 |
+
</output>
|
1896 |
+
</layer>
|
1897 |
+
<layer id="110" name="/Resize_1" type="Interpolate" version="opset4">
|
1898 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1899 |
+
<input>
|
1900 |
+
<port id="0" precision="FP32">
|
1901 |
+
<dim>1</dim>
|
1902 |
+
<dim>256</dim>
|
1903 |
+
<dim>16</dim>
|
1904 |
+
<dim>16</dim>
|
1905 |
+
</port>
|
1906 |
+
<port id="1" precision="I64">
|
1907 |
+
<dim>4</dim>
|
1908 |
+
</port>
|
1909 |
+
<port id="2" precision="FP32">
|
1910 |
+
<dim>4</dim>
|
1911 |
+
</port>
|
1912 |
+
</input>
|
1913 |
+
<output>
|
1914 |
+
<port id="3" precision="FP32" names="/Resize_1_output_0">
|
1915 |
+
<dim>1</dim>
|
1916 |
+
<dim>256</dim>
|
1917 |
+
<dim>64</dim>
|
1918 |
+
<dim>64</dim>
|
1919 |
+
</port>
|
1920 |
+
</output>
|
1921 |
+
</layer>
|
1922 |
+
<layer id="111" name="/Concat_4" type="Concat" version="opset1">
|
1923 |
+
<data axis="1" />
|
1924 |
+
<input>
|
1925 |
+
<port id="0" precision="FP32">
|
1926 |
+
<dim>1</dim>
|
1927 |
+
<dim>192</dim>
|
1928 |
+
<dim>64</dim>
|
1929 |
+
<dim>64</dim>
|
1930 |
+
</port>
|
1931 |
+
<port id="1" precision="FP32">
|
1932 |
+
<dim>1</dim>
|
1933 |
+
<dim>256</dim>
|
1934 |
+
<dim>64</dim>
|
1935 |
+
<dim>64</dim>
|
1936 |
+
</port>
|
1937 |
+
</input>
|
1938 |
+
<output>
|
1939 |
+
<port id="2" precision="FP32" names="/Concat_4_output_0">
|
1940 |
+
<dim>1</dim>
|
1941 |
+
<dim>448</dim>
|
1942 |
+
<dim>64</dim>
|
1943 |
+
<dim>64</dim>
|
1944 |
+
</port>
|
1945 |
+
</output>
|
1946 |
+
</layer>
|
1947 |
+
<layer id="112" name="onnx::Gather_308" type="Const" version="opset1">
|
1948 |
+
<data element_type="i64" shape="100" offset="11122236" size="800" />
|
1949 |
+
<output>
|
1950 |
+
<port id="0" precision="I64" names="onnx::Gather_308">
|
1951 |
+
<dim>100</dim>
|
1952 |
+
</port>
|
1953 |
+
</output>
|
1954 |
+
</layer>
|
1955 |
+
<layer id="113" name="Constant_965" type="Const" version="opset1">
|
1956 |
+
<data element_type="i64" shape="" offset="2728464" size="8" />
|
1957 |
+
<output>
|
1958 |
+
<port id="0" precision="I64" />
|
1959 |
+
</output>
|
1960 |
+
</layer>
|
1961 |
+
<layer id="114" name="/Gather_2" type="Gather" version="opset8">
|
1962 |
+
<data batch_dims="0" />
|
1963 |
+
<input>
|
1964 |
+
<port id="0" precision="FP32">
|
1965 |
+
<dim>1</dim>
|
1966 |
+
<dim>448</dim>
|
1967 |
+
<dim>64</dim>
|
1968 |
+
<dim>64</dim>
|
1969 |
+
</port>
|
1970 |
+
<port id="1" precision="I64">
|
1971 |
+
<dim>100</dim>
|
1972 |
+
</port>
|
1973 |
+
<port id="2" precision="I64" />
|
1974 |
+
</input>
|
1975 |
+
<output>
|
1976 |
+
<port id="3" precision="FP32" names="/Gather_2_output_0">
|
1977 |
+
<dim>1</dim>
|
1978 |
+
<dim>100</dim>
|
1979 |
+
<dim>64</dim>
|
1980 |
+
<dim>64</dim>
|
1981 |
+
</port>
|
1982 |
+
</output>
|
1983 |
+
</layer>
|
1984 |
+
<layer id="115" name="/anomaly_map_generator/Constant" type="Const" version="opset1">
|
1985 |
+
<data element_type="i64" shape="3" offset="11123036" size="24" />
|
1986 |
+
<output>
|
1987 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_output_0">
|
1988 |
+
<dim>3</dim>
|
1989 |
+
</port>
|
1990 |
+
</output>
|
1991 |
+
</layer>
|
1992 |
+
<layer id="116" name="/anomaly_map_generator/Reshape" type="Reshape" version="opset1">
|
1993 |
+
<data special_zero="true" />
|
1994 |
+
<input>
|
1995 |
+
<port id="0" precision="FP32">
|
1996 |
+
<dim>1</dim>
|
1997 |
+
<dim>100</dim>
|
1998 |
+
<dim>64</dim>
|
1999 |
+
<dim>64</dim>
|
2000 |
+
</port>
|
2001 |
+
<port id="1" precision="I64">
|
2002 |
+
<dim>3</dim>
|
2003 |
+
</port>
|
2004 |
+
</input>
|
2005 |
+
<output>
|
2006 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_output_0">
|
2007 |
+
<dim>1</dim>
|
2008 |
+
<dim>100</dim>
|
2009 |
+
<dim>4096</dim>
|
2010 |
+
</port>
|
2011 |
+
</output>
|
2012 |
+
</layer>
|
2013 |
+
<layer id="117" name="Constant_6584" type="Const" version="opset1">
|
2014 |
+
<data element_type="f32" shape="1, 100, 4096" offset="11123060" size="1638400" />
|
2015 |
+
<output>
|
2016 |
+
<port id="0" precision="FP32">
|
2017 |
+
<dim>1</dim>
|
2018 |
+
<dim>100</dim>
|
2019 |
+
<dim>4096</dim>
|
2020 |
+
</port>
|
2021 |
+
</output>
|
2022 |
+
</layer>
|
2023 |
+
<layer id="118" name="/anomaly_map_generator/Sub" type="Subtract" version="opset1">
|
2024 |
+
<data auto_broadcast="numpy" />
|
2025 |
+
<input>
|
2026 |
+
<port id="0" precision="FP32">
|
2027 |
+
<dim>1</dim>
|
2028 |
+
<dim>100</dim>
|
2029 |
+
<dim>4096</dim>
|
2030 |
+
</port>
|
2031 |
+
<port id="1" precision="FP32">
|
2032 |
+
<dim>1</dim>
|
2033 |
+
<dim>100</dim>
|
2034 |
+
<dim>4096</dim>
|
2035 |
+
</port>
|
2036 |
+
</input>
|
2037 |
+
<output>
|
2038 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Sub_output_0">
|
2039 |
+
<dim>1</dim>
|
2040 |
+
<dim>100</dim>
|
2041 |
+
<dim>4096</dim>
|
2042 |
+
</port>
|
2043 |
+
</output>
|
2044 |
+
</layer>
|
2045 |
+
<layer id="119" name="Constant_975" type="Const" version="opset1">
|
2046 |
+
<data element_type="i64" shape="3" offset="12761460" size="24" />
|
2047 |
+
<output>
|
2048 |
+
<port id="0" precision="I64">
|
2049 |
+
<dim>3</dim>
|
2050 |
+
</port>
|
2051 |
+
</output>
|
2052 |
+
</layer>
|
2053 |
+
<layer id="120" name="/anomaly_map_generator/Transpose" type="Transpose" version="opset1">
|
2054 |
+
<input>
|
2055 |
+
<port id="0" precision="FP32">
|
2056 |
+
<dim>1</dim>
|
2057 |
+
<dim>100</dim>
|
2058 |
+
<dim>4096</dim>
|
2059 |
+
</port>
|
2060 |
+
<port id="1" precision="I64">
|
2061 |
+
<dim>3</dim>
|
2062 |
+
</port>
|
2063 |
+
</input>
|
2064 |
+
<output>
|
2065 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Transpose_output_0">
|
2066 |
+
<dim>4096</dim>
|
2067 |
+
<dim>1</dim>
|
2068 |
+
<dim>100</dim>
|
2069 |
+
</port>
|
2070 |
+
</output>
|
2071 |
+
</layer>
|
2072 |
+
<layer id="121" name="onnx::MatMul_310" type="Const" version="opset1">
|
2073 |
+
<data element_type="f32" shape="4096, 100, 100" offset="12761484" size="163840000" />
|
2074 |
+
<output>
|
2075 |
+
<port id="0" precision="FP32" names="onnx::MatMul_310">
|
2076 |
+
<dim>4096</dim>
|
2077 |
+
<dim>100</dim>
|
2078 |
+
<dim>100</dim>
|
2079 |
+
</port>
|
2080 |
+
</output>
|
2081 |
+
</layer>
|
2082 |
+
<layer id="122" name="/anomaly_map_generator/MatMul" type="MatMul" version="opset1">
|
2083 |
+
<data transpose_a="false" transpose_b="false" />
|
2084 |
+
<input>
|
2085 |
+
<port id="0" precision="FP32">
|
2086 |
+
<dim>4096</dim>
|
2087 |
+
<dim>1</dim>
|
2088 |
+
<dim>100</dim>
|
2089 |
+
</port>
|
2090 |
+
<port id="1" precision="FP32">
|
2091 |
+
<dim>4096</dim>
|
2092 |
+
<dim>100</dim>
|
2093 |
+
<dim>100</dim>
|
2094 |
+
</port>
|
2095 |
+
</input>
|
2096 |
+
<output>
|
2097 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/MatMul_output_0">
|
2098 |
+
<dim>4096</dim>
|
2099 |
+
<dim>1</dim>
|
2100 |
+
<dim>100</dim>
|
2101 |
+
</port>
|
2102 |
+
</output>
|
2103 |
+
</layer>
|
2104 |
+
<layer id="123" name="/anomaly_map_generator/Mul" type="Multiply" version="opset1">
|
2105 |
+
<data auto_broadcast="numpy" />
|
2106 |
+
<input>
|
2107 |
+
<port id="0" precision="FP32">
|
2108 |
+
<dim>4096</dim>
|
2109 |
+
<dim>1</dim>
|
2110 |
+
<dim>100</dim>
|
2111 |
+
</port>
|
2112 |
+
<port id="1" precision="FP32">
|
2113 |
+
<dim>4096</dim>
|
2114 |
+
<dim>1</dim>
|
2115 |
+
<dim>100</dim>
|
2116 |
+
</port>
|
2117 |
+
</input>
|
2118 |
+
<output>
|
2119 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Mul_output_0">
|
2120 |
+
<dim>4096</dim>
|
2121 |
+
<dim>1</dim>
|
2122 |
+
<dim>100</dim>
|
2123 |
+
</port>
|
2124 |
+
</output>
|
2125 |
+
</layer>
|
2126 |
+
<layer id="124" name="Constant_979" type="Const" version="opset1">
|
2127 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2128 |
+
<output>
|
2129 |
+
<port id="0" precision="I64">
|
2130 |
+
<dim>1</dim>
|
2131 |
+
</port>
|
2132 |
+
</output>
|
2133 |
+
</layer>
|
2134 |
+
<layer id="125" name="/anomaly_map_generator/ReduceSum" type="ReduceSum" version="opset1">
|
2135 |
+
<data keep_dims="false" />
|
2136 |
+
<input>
|
2137 |
+
<port id="0" precision="FP32">
|
2138 |
+
<dim>4096</dim>
|
2139 |
+
<dim>1</dim>
|
2140 |
+
<dim>100</dim>
|
2141 |
+
</port>
|
2142 |
+
<port id="1" precision="I64">
|
2143 |
+
<dim>1</dim>
|
2144 |
+
</port>
|
2145 |
+
</input>
|
2146 |
+
<output>
|
2147 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/ReduceSum_output_0">
|
2148 |
+
<dim>4096</dim>
|
2149 |
+
<dim>1</dim>
|
2150 |
+
</port>
|
2151 |
+
</output>
|
2152 |
+
</layer>
|
2153 |
+
<layer id="126" name="/anomaly_map_generator/Constant_1" type="Const" version="opset1">
|
2154 |
+
<data element_type="i64" shape="4" offset="176601484" size="32" />
|
2155 |
+
<output>
|
2156 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_1_output_0">
|
2157 |
+
<dim>4</dim>
|
2158 |
+
</port>
|
2159 |
+
</output>
|
2160 |
+
</layer>
|
2161 |
+
<layer id="127" name="/anomaly_map_generator/Reshape_1" type="Reshape" version="opset1">
|
2162 |
+
<data special_zero="true" />
|
2163 |
+
<input>
|
2164 |
+
<port id="0" precision="FP32">
|
2165 |
+
<dim>4096</dim>
|
2166 |
+
<dim>1</dim>
|
2167 |
+
</port>
|
2168 |
+
<port id="1" precision="I64">
|
2169 |
+
<dim>4</dim>
|
2170 |
+
</port>
|
2171 |
+
</input>
|
2172 |
+
<output>
|
2173 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_1_output_0">
|
2174 |
+
<dim>1</dim>
|
2175 |
+
<dim>1</dim>
|
2176 |
+
<dim>64</dim>
|
2177 |
+
<dim>64</dim>
|
2178 |
+
</port>
|
2179 |
+
</output>
|
2180 |
+
</layer>
|
2181 |
+
<layer id="128" name="/anomaly_map_generator/Clip" type="Clamp" version="opset1">
|
2182 |
+
<data min="0" max="3.4028234663852886e+38" />
|
2183 |
+
<input>
|
2184 |
+
<port id="0" precision="FP32">
|
2185 |
+
<dim>1</dim>
|
2186 |
+
<dim>1</dim>
|
2187 |
+
<dim>64</dim>
|
2188 |
+
<dim>64</dim>
|
2189 |
+
</port>
|
2190 |
+
</input>
|
2191 |
+
<output>
|
2192 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Clip_output_0">
|
2193 |
+
<dim>1</dim>
|
2194 |
+
<dim>1</dim>
|
2195 |
+
<dim>64</dim>
|
2196 |
+
<dim>64</dim>
|
2197 |
+
</port>
|
2198 |
+
</output>
|
2199 |
+
</layer>
|
2200 |
+
<layer id="129" name="/anomaly_map_generator/Sqrt" type="Sqrt" version="opset1">
|
2201 |
+
<input>
|
2202 |
+
<port id="0" precision="FP32">
|
2203 |
+
<dim>1</dim>
|
2204 |
+
<dim>1</dim>
|
2205 |
+
<dim>64</dim>
|
2206 |
+
<dim>64</dim>
|
2207 |
+
</port>
|
2208 |
+
</input>
|
2209 |
+
<output>
|
2210 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Sqrt_output_0">
|
2211 |
+
<dim>1</dim>
|
2212 |
+
<dim>1</dim>
|
2213 |
+
<dim>64</dim>
|
2214 |
+
<dim>64</dim>
|
2215 |
+
</port>
|
2216 |
+
</output>
|
2217 |
+
</layer>
|
2218 |
+
<layer id="130" name="/anomaly_map_generator/Shape" type="ShapeOf" version="opset3">
|
2219 |
+
<data output_type="i64" />
|
2220 |
+
<input>
|
2221 |
+
<port id="0" precision="FP32">
|
2222 |
+
<dim>1</dim>
|
2223 |
+
<dim>1</dim>
|
2224 |
+
<dim>64</dim>
|
2225 |
+
<dim>64</dim>
|
2226 |
+
</port>
|
2227 |
+
</input>
|
2228 |
+
<output>
|
2229 |
+
<port id="1" precision="I64" names="/anomaly_map_generator/Shape_output_0">
|
2230 |
+
<dim>4</dim>
|
2231 |
+
</port>
|
2232 |
+
</output>
|
2233 |
+
</layer>
|
2234 |
+
<layer id="131" name="/anomaly_map_generator/Constant_4" type="Const" version="opset1">
|
2235 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
2236 |
+
<output>
|
2237 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_4_output_0">
|
2238 |
+
<dim>1</dim>
|
2239 |
+
</port>
|
2240 |
+
</output>
|
2241 |
+
</layer>
|
2242 |
+
<layer id="132" name="/anomaly_map_generator/Constant_5" type="Const" version="opset1">
|
2243 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2244 |
+
<output>
|
2245 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_5_output_0">
|
2246 |
+
<dim>1</dim>
|
2247 |
+
</port>
|
2248 |
+
</output>
|
2249 |
+
</layer>
|
2250 |
+
<layer id="133" name="Broadcast_1002" type="Const" version="opset1">
|
2251 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
2252 |
+
<output>
|
2253 |
+
<port id="0" precision="I64">
|
2254 |
+
<dim>1</dim>
|
2255 |
+
</port>
|
2256 |
+
</output>
|
2257 |
+
</layer>
|
2258 |
+
<layer id="134" name="/anomaly_map_generator/Slice" type="StridedSlice" version="opset1">
|
2259 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
2260 |
+
<input>
|
2261 |
+
<port id="0" precision="I64">
|
2262 |
+
<dim>4</dim>
|
2263 |
+
</port>
|
2264 |
+
<port id="1" precision="I64">
|
2265 |
+
<dim>1</dim>
|
2266 |
+
</port>
|
2267 |
+
<port id="2" precision="I64">
|
2268 |
+
<dim>1</dim>
|
2269 |
+
</port>
|
2270 |
+
<port id="3" precision="I64">
|
2271 |
+
<dim>1</dim>
|
2272 |
+
</port>
|
2273 |
+
</input>
|
2274 |
+
<output>
|
2275 |
+
<port id="4" precision="I64" names="/anomaly_map_generator/Slice_output_0">
|
2276 |
+
<dim>2</dim>
|
2277 |
+
</port>
|
2278 |
+
</output>
|
2279 |
+
</layer>
|
2280 |
+
<layer id="135" name="/anomaly_map_generator/Constant_6" type="Const" version="opset1">
|
2281 |
+
<data element_type="i64" shape="2" offset="176601516" size="16" />
|
2282 |
+
<output>
|
2283 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_6_output_0">
|
2284 |
+
<dim>2</dim>
|
2285 |
+
</port>
|
2286 |
+
</output>
|
2287 |
+
</layer>
|
2288 |
+
<layer id="136" name="/anomaly_map_generator/Concat" type="Concat" version="opset1">
|
2289 |
+
<data axis="0" />
|
2290 |
+
<input>
|
2291 |
+
<port id="0" precision="I64">
|
2292 |
+
<dim>2</dim>
|
2293 |
+
</port>
|
2294 |
+
<port id="1" precision="I64">
|
2295 |
+
<dim>2</dim>
|
2296 |
+
</port>
|
2297 |
+
</input>
|
2298 |
+
<output>
|
2299 |
+
<port id="2" precision="I64" names="/anomaly_map_generator/Concat_output_0">
|
2300 |
+
<dim>4</dim>
|
2301 |
+
</port>
|
2302 |
+
</output>
|
2303 |
+
</layer>
|
2304 |
+
<layer id="137" name="Convert_1025" type="Convert" version="opset1">
|
2305 |
+
<data destination_type="f32" />
|
2306 |
+
<input>
|
2307 |
+
<port id="0" precision="I64">
|
2308 |
+
<dim>4</dim>
|
2309 |
+
</port>
|
2310 |
+
</input>
|
2311 |
+
<output>
|
2312 |
+
<port id="1" precision="FP32">
|
2313 |
+
<dim>4</dim>
|
2314 |
+
</port>
|
2315 |
+
</output>
|
2316 |
+
</layer>
|
2317 |
+
<layer id="138" name="Convert_1024" type="Convert" version="opset1">
|
2318 |
+
<data destination_type="f32" />
|
2319 |
+
<input>
|
2320 |
+
<port id="0" precision="I64">
|
2321 |
+
<dim>4</dim>
|
2322 |
+
</port>
|
2323 |
+
</input>
|
2324 |
+
<output>
|
2325 |
+
<port id="1" precision="FP32">
|
2326 |
+
<dim>4</dim>
|
2327 |
+
</port>
|
2328 |
+
</output>
|
2329 |
+
</layer>
|
2330 |
+
<layer id="139" name="Divide_1026" type="Divide" version="opset1">
|
2331 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
2332 |
+
<input>
|
2333 |
+
<port id="0" precision="FP32">
|
2334 |
+
<dim>4</dim>
|
2335 |
+
</port>
|
2336 |
+
<port id="1" precision="FP32">
|
2337 |
+
<dim>4</dim>
|
2338 |
+
</port>
|
2339 |
+
</input>
|
2340 |
+
<output>
|
2341 |
+
<port id="2" precision="FP32">
|
2342 |
+
<dim>4</dim>
|
2343 |
+
</port>
|
2344 |
+
</output>
|
2345 |
+
</layer>
|
2346 |
+
<layer id="140" name="Constant_6585" type="Const" version="opset1">
|
2347 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
2348 |
+
<output>
|
2349 |
+
<port id="0" precision="FP32">
|
2350 |
+
<dim>1</dim>
|
2351 |
+
</port>
|
2352 |
+
</output>
|
2353 |
+
</layer>
|
2354 |
+
<layer id="141" name="Add_1028" type="Add" version="opset1">
|
2355 |
+
<data auto_broadcast="numpy" />
|
2356 |
+
<input>
|
2357 |
+
<port id="0" precision="FP32">
|
2358 |
+
<dim>4</dim>
|
2359 |
+
</port>
|
2360 |
+
<port id="1" precision="FP32">
|
2361 |
+
<dim>1</dim>
|
2362 |
+
</port>
|
2363 |
+
</input>
|
2364 |
+
<output>
|
2365 |
+
<port id="2" precision="FP32">
|
2366 |
+
<dim>4</dim>
|
2367 |
+
</port>
|
2368 |
+
</output>
|
2369 |
+
</layer>
|
2370 |
+
<layer id="142" name="/anomaly_map_generator/Resize" type="Interpolate" version="opset4">
|
2371 |
+
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
2372 |
+
<input>
|
2373 |
+
<port id="0" precision="FP32">
|
2374 |
+
<dim>1</dim>
|
2375 |
+
<dim>1</dim>
|
2376 |
+
<dim>64</dim>
|
2377 |
+
<dim>64</dim>
|
2378 |
+
</port>
|
2379 |
+
<port id="1" precision="I64">
|
2380 |
+
<dim>4</dim>
|
2381 |
+
</port>
|
2382 |
+
<port id="2" precision="FP32">
|
2383 |
+
<dim>4</dim>
|
2384 |
+
</port>
|
2385 |
+
</input>
|
2386 |
+
<output>
|
2387 |
+
<port id="3" precision="FP32" names="/anomaly_map_generator/Resize_output_0">
|
2388 |
+
<dim>1</dim>
|
2389 |
+
<dim>1</dim>
|
2390 |
+
<dim>256</dim>
|
2391 |
+
<dim>256</dim>
|
2392 |
+
</port>
|
2393 |
+
</output>
|
2394 |
+
</layer>
|
2395 |
+
<layer id="143" name="Split_1097.0" type="Const" version="opset1">
|
2396 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2397 |
+
<output>
|
2398 |
+
<port id="0" precision="I64">
|
2399 |
+
<dim>4</dim>
|
2400 |
+
</port>
|
2401 |
+
</output>
|
2402 |
+
</layer>
|
2403 |
+
<layer id="144" name="Split_1097.1" type="Const" version="opset1">
|
2404 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2405 |
+
<output>
|
2406 |
+
<port id="0" precision="I64">
|
2407 |
+
<dim>4</dim>
|
2408 |
+
</port>
|
2409 |
+
</output>
|
2410 |
+
</layer>
|
2411 |
+
<layer id="145" name="Constant_1095" type="Const" version="opset1">
|
2412 |
+
<data element_type="f32" shape="" offset="176601564" size="4" />
|
2413 |
+
<output>
|
2414 |
+
<port id="0" precision="FP32" />
|
2415 |
+
</output>
|
2416 |
+
</layer>
|
2417 |
+
<layer id="146" name="/anomaly_map_generator/blur/Pad" type="Pad" version="opset1">
|
2418 |
+
<data pad_mode="reflect" />
|
2419 |
+
<input>
|
2420 |
+
<port id="0" precision="FP32">
|
2421 |
+
<dim>1</dim>
|
2422 |
+
<dim>1</dim>
|
2423 |
+
<dim>256</dim>
|
2424 |
+
<dim>256</dim>
|
2425 |
+
</port>
|
2426 |
+
<port id="1" precision="I64">
|
2427 |
+
<dim>4</dim>
|
2428 |
+
</port>
|
2429 |
+
<port id="2" precision="I64">
|
2430 |
+
<dim>4</dim>
|
2431 |
+
</port>
|
2432 |
+
<port id="3" precision="FP32" />
|
2433 |
+
</input>
|
2434 |
+
<output>
|
2435 |
+
<port id="4" precision="FP32" names="/anomaly_map_generator/blur/Pad_output_0">
|
2436 |
+
<dim>1</dim>
|
2437 |
+
<dim>1</dim>
|
2438 |
+
<dim>288</dim>
|
2439 |
+
<dim>288</dim>
|
2440 |
+
</port>
|
2441 |
+
</output>
|
2442 |
+
</layer>
|
2443 |
+
<layer id="147" name="anomaly_map_generator.blur.kernel" type="Const" version="opset1">
|
2444 |
+
<data element_type="f32" shape="1, 1, 33, 33" offset="176601568" size="4356" />
|
2445 |
+
<output>
|
2446 |
+
<port id="0" precision="FP32" names="anomaly_map_generator.blur.kernel">
|
2447 |
+
<dim>1</dim>
|
2448 |
+
<dim>1</dim>
|
2449 |
+
<dim>33</dim>
|
2450 |
+
<dim>33</dim>
|
2451 |
+
</port>
|
2452 |
+
</output>
|
2453 |
+
</layer>
|
2454 |
+
<layer id="148" name="/anomaly_map_generator/blur/Conv" type="Convolution" version="opset1">
|
2455 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
2456 |
+
<input>
|
2457 |
+
<port id="0" precision="FP32">
|
2458 |
+
<dim>1</dim>
|
2459 |
+
<dim>1</dim>
|
2460 |
+
<dim>288</dim>
|
2461 |
+
<dim>288</dim>
|
2462 |
+
</port>
|
2463 |
+
<port id="1" precision="FP32">
|
2464 |
+
<dim>1</dim>
|
2465 |
+
<dim>1</dim>
|
2466 |
+
<dim>33</dim>
|
2467 |
+
<dim>33</dim>
|
2468 |
+
</port>
|
2469 |
+
</input>
|
2470 |
+
<output>
|
2471 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/blur/Conv_output_0">
|
2472 |
+
<dim>1</dim>
|
2473 |
+
<dim>1</dim>
|
2474 |
+
<dim>256</dim>
|
2475 |
+
<dim>256</dim>
|
2476 |
+
</port>
|
2477 |
+
</output>
|
2478 |
+
</layer>
|
2479 |
+
<layer id="149" name="/anomaly_map_generator/blur/Constant_8" type="Const" version="opset1">
|
2480 |
+
<data element_type="i64" shape="4" offset="176605924" size="32" />
|
2481 |
+
<output>
|
2482 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/blur/Constant_8_output_0">
|
2483 |
+
<dim>4</dim>
|
2484 |
+
</port>
|
2485 |
+
</output>
|
2486 |
+
</layer>
|
2487 |
+
<layer id="150" name="output" type="Reshape" version="opset1">
|
2488 |
+
<data special_zero="true" />
|
2489 |
+
<input>
|
2490 |
+
<port id="0" precision="FP32">
|
2491 |
+
<dim>1</dim>
|
2492 |
+
<dim>1</dim>
|
2493 |
+
<dim>256</dim>
|
2494 |
+
<dim>256</dim>
|
2495 |
+
</port>
|
2496 |
+
<port id="1" precision="I64">
|
2497 |
+
<dim>4</dim>
|
2498 |
+
</port>
|
2499 |
+
</input>
|
2500 |
+
<output>
|
2501 |
+
<port id="2" precision="FP32" names="output">
|
2502 |
+
<dim>1</dim>
|
2503 |
+
<dim>1</dim>
|
2504 |
+
<dim>256</dim>
|
2505 |
+
<dim>256</dim>
|
2506 |
+
</port>
|
2507 |
+
</output>
|
2508 |
+
</layer>
|
2509 |
+
<layer id="151" name="output/sink_port_0" type="Result" version="opset1">
|
2510 |
+
<input>
|
2511 |
+
<port id="0" precision="FP32">
|
2512 |
+
<dim>1</dim>
|
2513 |
+
<dim>1</dim>
|
2514 |
+
<dim>256</dim>
|
2515 |
+
<dim>256</dim>
|
2516 |
+
</port>
|
2517 |
+
</input>
|
2518 |
+
</layer>
|
2519 |
+
</layers>
|
2520 |
+
<edges>
|
2521 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
2522 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
|
2523 |
+
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
|
2524 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
|
2525 |
+
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
|
2526 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
|
2527 |
+
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
|
2528 |
+
<edge from-layer="6" from-port="1" to-layer="16" to-port="1" />
|
2529 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
|
2530 |
+
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
|
2531 |
+
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
|
2532 |
+
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
|
2533 |
+
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
|
2534 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
|
2535 |
+
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
|
2536 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
|
2537 |
+
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
|
2538 |
+
<edge from-layer="16" from-port="2" to-layer="17" to-port="0" />
|
2539 |
+
<edge from-layer="17" from-port="1" to-layer="19" to-port="0" />
|
2540 |
+
<edge from-layer="17" from-port="1" to-layer="27" to-port="1" />
|
2541 |
+
<edge from-layer="18" from-port="0" to-layer="19" to-port="1" />
|
2542 |
+
<edge from-layer="19" from-port="2" to-layer="21" to-port="0" />
|
2543 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="1" />
|
2544 |
+
<edge from-layer="21" from-port="2" to-layer="22" to-port="0" />
|
2545 |
+
<edge from-layer="22" from-port="1" to-layer="24" to-port="0" />
|
2546 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
|
2547 |
+
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
|
2548 |
+
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
|
2549 |
+
<edge from-layer="26" from-port="2" to-layer="27" to-port="0" />
|
2550 |
+
<edge from-layer="27" from-port="2" to-layer="28" to-port="0" />
|
2551 |
+
<edge from-layer="28" from-port="1" to-layer="30" to-port="0" />
|
2552 |
+
<edge from-layer="28" from-port="1" to-layer="39" to-port="0" />
|
2553 |
+
<edge from-layer="28" from-port="1" to-layer="68" to-port="0" />
|
2554 |
+
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
|
2555 |
+
<edge from-layer="30" from-port="2" to-layer="32" to-port="0" />
|
2556 |
+
<edge from-layer="31" from-port="0" to-layer="32" to-port="1" />
|
2557 |
+
<edge from-layer="32" from-port="2" to-layer="33" to-port="0" />
|
2558 |
+
<edge from-layer="33" from-port="1" to-layer="35" to-port="0" />
|
2559 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
2560 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
2561 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
|
2562 |
+
<edge from-layer="37" from-port="2" to-layer="42" to-port="0" />
|
2563 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
2564 |
+
<edge from-layer="39" from-port="2" to-layer="41" to-port="0" />
|
2565 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="1" />
|
2566 |
+
<edge from-layer="41" from-port="2" to-layer="42" to-port="1" />
|
2567 |
+
<edge from-layer="42" from-port="2" to-layer="43" to-port="0" />
|
2568 |
+
<edge from-layer="43" from-port="1" to-layer="45" to-port="0" />
|
2569 |
+
<edge from-layer="43" from-port="1" to-layer="53" to-port="1" />
|
2570 |
+
<edge from-layer="44" from-port="0" to-layer="45" to-port="1" />
|
2571 |
+
<edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
|
2572 |
+
<edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
|
2573 |
+
<edge from-layer="47" from-port="2" to-layer="48" to-port="0" />
|
2574 |
+
<edge from-layer="48" from-port="1" to-layer="50" to-port="0" />
|
2575 |
+
<edge from-layer="49" from-port="0" to-layer="50" to-port="1" />
|
2576 |
+
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
|
2577 |
+
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
|
2578 |
+
<edge from-layer="52" from-port="2" to-layer="53" to-port="0" />
|
2579 |
+
<edge from-layer="53" from-port="2" to-layer="54" to-port="0" />
|
2580 |
+
<edge from-layer="54" from-port="1" to-layer="55" to-port="0" />
|
2581 |
+
<edge from-layer="54" from-port="1" to-layer="67" to-port="0" />
|
2582 |
+
<edge from-layer="54" from-port="1" to-layer="79" to-port="0" />
|
2583 |
+
<edge from-layer="54" from-port="1" to-layer="70" to-port="0" />
|
2584 |
+
<edge from-layer="55" from-port="1" to-layer="59" to-port="0" />
|
2585 |
+
<edge from-layer="55" from-port="1" to-layer="63" to-port="0" />
|
2586 |
+
<edge from-layer="56" from-port="0" to-layer="59" to-port="1" />
|
2587 |
+
<edge from-layer="57" from-port="0" to-layer="59" to-port="2" />
|
2588 |
+
<edge from-layer="58" from-port="0" to-layer="59" to-port="3" />
|
2589 |
+
<edge from-layer="59" from-port="4" to-layer="61" to-port="0" />
|
2590 |
+
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
|
2591 |
+
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
|
2592 |
+
<edge from-layer="61" from-port="2" to-layer="67" to-port="1" />
|
2593 |
+
<edge from-layer="62" from-port="1" to-layer="64" to-port="0" />
|
2594 |
+
<edge from-layer="63" from-port="1" to-layer="64" to-port="1" />
|
2595 |
+
<edge from-layer="64" from-port="2" to-layer="66" to-port="0" />
|
2596 |
+
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
|
2597 |
+
<edge from-layer="66" from-port="2" to-layer="67" to-port="2" />
|
2598 |
+
<edge from-layer="67" from-port="3" to-layer="68" to-port="1" />
|
2599 |
+
<edge from-layer="68" from-port="2" to-layer="111" to-port="0" />
|
2600 |
+
<edge from-layer="68" from-port="2" to-layer="100" to-port="0" />
|
2601 |
+
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
|
2602 |
+
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
|
2603 |
+
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
|
2604 |
+
<edge from-layer="72" from-port="2" to-layer="73" to-port="0" />
|
2605 |
+
<edge from-layer="73" from-port="1" to-layer="75" to-port="0" />
|
2606 |
+
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
|
2607 |
+
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
|
2608 |
+
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
|
2609 |
+
<edge from-layer="77" from-port="2" to-layer="82" to-port="0" />
|
2610 |
+
<edge from-layer="78" from-port="0" to-layer="79" to-port="1" />
|
2611 |
+
<edge from-layer="79" from-port="2" to-layer="81" to-port="0" />
|
2612 |
+
<edge from-layer="80" from-port="0" to-layer="81" to-port="1" />
|
2613 |
+
<edge from-layer="81" from-port="2" to-layer="82" to-port="1" />
|
2614 |
+
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
|
2615 |
+
<edge from-layer="83" from-port="1" to-layer="85" to-port="0" />
|
2616 |
+
<edge from-layer="83" from-port="1" to-layer="93" to-port="1" />
|
2617 |
+
<edge from-layer="84" from-port="0" to-layer="85" to-port="1" />
|
2618 |
+
<edge from-layer="85" from-port="2" to-layer="87" to-port="0" />
|
2619 |
+
<edge from-layer="86" from-port="0" to-layer="87" to-port="1" />
|
2620 |
+
<edge from-layer="87" from-port="2" to-layer="88" to-port="0" />
|
2621 |
+
<edge from-layer="88" from-port="1" to-layer="90" to-port="0" />
|
2622 |
+
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
|
2623 |
+
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
|
2624 |
+
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
|
2625 |
+
<edge from-layer="92" from-port="2" to-layer="93" to-port="0" />
|
2626 |
+
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
|
2627 |
+
<edge from-layer="94" from-port="1" to-layer="95" to-port="0" />
|
2628 |
+
<edge from-layer="94" from-port="1" to-layer="110" to-port="0" />
|
2629 |
+
<edge from-layer="95" from-port="1" to-layer="99" to-port="0" />
|
2630 |
+
<edge from-layer="95" from-port="1" to-layer="106" to-port="0" />
|
2631 |
+
<edge from-layer="96" from-port="0" to-layer="99" to-port="1" />
|
2632 |
+
<edge from-layer="97" from-port="0" to-layer="99" to-port="2" />
|
2633 |
+
<edge from-layer="98" from-port="0" to-layer="99" to-port="3" />
|
2634 |
+
<edge from-layer="99" from-port="4" to-layer="104" to-port="0" />
|
2635 |
+
<edge from-layer="100" from-port="1" to-layer="103" to-port="0" />
|
2636 |
+
<edge from-layer="101" from-port="0" to-layer="103" to-port="1" />
|
2637 |
+
<edge from-layer="102" from-port="0" to-layer="103" to-port="2" />
|
2638 |
+
<edge from-layer="103" from-port="3" to-layer="104" to-port="1" />
|
2639 |
+
<edge from-layer="104" from-port="2" to-layer="105" to-port="0" />
|
2640 |
+
<edge from-layer="104" from-port="2" to-layer="110" to-port="1" />
|
2641 |
+
<edge from-layer="105" from-port="1" to-layer="107" to-port="0" />
|
2642 |
+
<edge from-layer="106" from-port="1" to-layer="107" to-port="1" />
|
2643 |
+
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
|
2644 |
+
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
|
2645 |
+
<edge from-layer="109" from-port="2" to-layer="110" to-port="2" />
|
2646 |
+
<edge from-layer="110" from-port="3" to-layer="111" to-port="1" />
|
2647 |
+
<edge from-layer="111" from-port="2" to-layer="114" to-port="0" />
|
2648 |
+
<edge from-layer="112" from-port="0" to-layer="114" to-port="1" />
|
2649 |
+
<edge from-layer="113" from-port="0" to-layer="114" to-port="2" />
|
2650 |
+
<edge from-layer="114" from-port="3" to-layer="116" to-port="0" />
|
2651 |
+
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
|
2652 |
+
<edge from-layer="116" from-port="2" to-layer="118" to-port="0" />
|
2653 |
+
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
|
2654 |
+
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
|
2655 |
+
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
|
2656 |
+
<edge from-layer="120" from-port="2" to-layer="122" to-port="0" />
|
2657 |
+
<edge from-layer="120" from-port="2" to-layer="123" to-port="1" />
|
2658 |
+
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
|
2659 |
+
<edge from-layer="122" from-port="2" to-layer="123" to-port="0" />
|
2660 |
+
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
|
2661 |
+
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
|
2662 |
+
<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
|
2663 |
+
<edge from-layer="126" from-port="0" to-layer="127" to-port="1" />
|
2664 |
+
<edge from-layer="127" from-port="2" to-layer="128" to-port="0" />
|
2665 |
+
<edge from-layer="128" from-port="1" to-layer="129" to-port="0" />
|
2666 |
+
<edge from-layer="129" from-port="1" to-layer="130" to-port="0" />
|
2667 |
+
<edge from-layer="129" from-port="1" to-layer="142" to-port="0" />
|
2668 |
+
<edge from-layer="130" from-port="1" to-layer="134" to-port="0" />
|
2669 |
+
<edge from-layer="130" from-port="1" to-layer="138" to-port="0" />
|
2670 |
+
<edge from-layer="131" from-port="0" to-layer="134" to-port="1" />
|
2671 |
+
<edge from-layer="132" from-port="0" to-layer="134" to-port="2" />
|
2672 |
+
<edge from-layer="133" from-port="0" to-layer="134" to-port="3" />
|
2673 |
+
<edge from-layer="134" from-port="4" to-layer="136" to-port="0" />
|
2674 |
+
<edge from-layer="135" from-port="0" to-layer="136" to-port="1" />
|
2675 |
+
<edge from-layer="136" from-port="2" to-layer="137" to-port="0" />
|
2676 |
+
<edge from-layer="136" from-port="2" to-layer="142" to-port="1" />
|
2677 |
+
<edge from-layer="137" from-port="1" to-layer="139" to-port="0" />
|
2678 |
+
<edge from-layer="138" from-port="1" to-layer="139" to-port="1" />
|
2679 |
+
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
|
2680 |
+
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
|
2681 |
+
<edge from-layer="141" from-port="2" to-layer="142" to-port="2" />
|
2682 |
+
<edge from-layer="142" from-port="3" to-layer="146" to-port="0" />
|
2683 |
+
<edge from-layer="143" from-port="0" to-layer="146" to-port="1" />
|
2684 |
+
<edge from-layer="144" from-port="0" to-layer="146" to-port="2" />
|
2685 |
+
<edge from-layer="145" from-port="0" to-layer="146" to-port="3" />
|
2686 |
+
<edge from-layer="146" from-port="4" to-layer="148" to-port="0" />
|
2687 |
+
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
|
2688 |
+
<edge from-layer="148" from-port="2" to-layer="150" to-port="0" />
|
2689 |
+
<edge from-layer="149" from-port="0" to-layer="150" to-port="1" />
|
2690 |
+
<edge from-layer="150" from-port="2" to-layer="151" to-port="0" />
|
2691 |
+
</edges>
|
2692 |
+
<rt_info>
|
2693 |
+
<MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2694 |
+
<Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2695 |
+
<conversion_parameters>
|
2696 |
+
<framework value="onnx" />
|
2697 |
+
<input_model value="DIR\model.onnx" />
|
2698 |
+
<model_name value="model" />
|
2699 |
+
<output_dir value="DIR" />
|
2700 |
+
</conversion_parameters>
|
2701 |
+
<legacy_frontend value="False" />
|
2702 |
+
</rt_info>
|
2703 |
+
</net>
|
cubes/examples/001.jpg
ADDED
cubes/examples/002.jpg
ADDED
cubes/examples/003.jpg
ADDED
cubes/examples/004.jpg
ADDED
cubes/examples/005.jpg
ADDED
cubes/examples/006.jpg
ADDED
cubes/examples/007.jpg
ADDED
cubes/examples/008.jpg
ADDED
cubes/run/weights/openvino/metadata.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task": "classification",
|
3 |
+
"transform": {
|
4 |
+
"__version__": "1.3.0",
|
5 |
+
"transform": {
|
6 |
+
"__class_fullname__": "Compose",
|
7 |
+
"p": 1.0,
|
8 |
+
"transforms": [
|
9 |
+
{
|
10 |
+
"__class_fullname__": "Resize",
|
11 |
+
"always_apply": true,
|
12 |
+
"p": 1,
|
13 |
+
"height": 256,
|
14 |
+
"width": 256,
|
15 |
+
"interpolation": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"__class_fullname__": "Normalize",
|
19 |
+
"always_apply": false,
|
20 |
+
"p": 1.0,
|
21 |
+
"mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"std": [
|
27 |
+
0.229,
|
28 |
+
0.224,
|
29 |
+
0.225
|
30 |
+
],
|
31 |
+
"max_pixel_value": 255.0
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"__class_fullname__": "ToTensorV2",
|
35 |
+
"always_apply": true,
|
36 |
+
"p": 1.0,
|
37 |
+
"transpose_mask": false
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"bbox_params": null,
|
41 |
+
"keypoint_params": null,
|
42 |
+
"additional_targets": {
|
43 |
+
"image": "image",
|
44 |
+
"depth_image": "image"
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"image_threshold": 37.23301696777344,
|
49 |
+
"pixel_threshold": 37.23301696777344,
|
50 |
+
"min": 1.7443453073501587,
|
51 |
+
"max": 57.53754806518555
|
52 |
+
}
|
cubes/run/weights/openvino/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a722ea3da4f616de7463711d41794e9a3251d1fa22393ab694a0796e68c1945
|
3 |
+
size 176605956
|
cubes/run/weights/openvino/model.mapping
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<mapping>
|
3 |
+
<map>
|
4 |
+
<framework name="input" output_port_id="input" />
|
5 |
+
<IR name="input" output_port_id="0" />
|
6 |
+
</map>
|
7 |
+
<map>
|
8 |
+
<framework name="onnx::Conv_260" output_port_id="onnx::Conv_260" />
|
9 |
+
<IR name="onnx::Conv_260" output_port_id="0" />
|
10 |
+
</map>
|
11 |
+
<map>
|
12 |
+
<framework name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/conv1/Conv_output_0" />
|
13 |
+
<IR name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="2" />
|
14 |
+
</map>
|
15 |
+
<map>
|
16 |
+
<framework name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="/feature_extractor/feature_extractor/act1/Relu_output_0" />
|
17 |
+
<IR name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="1" />
|
18 |
+
</map>
|
19 |
+
<map>
|
20 |
+
<framework name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0" />
|
21 |
+
<IR name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="1" />
|
22 |
+
</map>
|
23 |
+
<map>
|
24 |
+
<framework name="onnx::Conv_263" output_port_id="onnx::Conv_263" />
|
25 |
+
<IR name="onnx::Conv_263" output_port_id="0" />
|
26 |
+
</map>
|
27 |
+
<map>
|
28 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0" />
|
29 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="2" />
|
30 |
+
</map>
|
31 |
+
<map>
|
32 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0" />
|
33 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="1" />
|
34 |
+
</map>
|
35 |
+
<map>
|
36 |
+
<framework name="onnx::Conv_266" output_port_id="onnx::Conv_266" />
|
37 |
+
<IR name="onnx::Conv_266" output_port_id="0" />
|
38 |
+
</map>
|
39 |
+
<map>
|
40 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0" />
|
41 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="2" />
|
42 |
+
</map>
|
43 |
+
<map>
|
44 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0" />
|
45 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="2" />
|
46 |
+
</map>
|
47 |
+
<map>
|
48 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0" />
|
49 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="1" />
|
50 |
+
</map>
|
51 |
+
<map>
|
52 |
+
<framework name="onnx::Conv_269" output_port_id="onnx::Conv_269" />
|
53 |
+
<IR name="onnx::Conv_269" output_port_id="0" />
|
54 |
+
</map>
|
55 |
+
<map>
|
56 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0" />
|
57 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="2" />
|
58 |
+
</map>
|
59 |
+
<map>
|
60 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0" />
|
61 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="1" />
|
62 |
+
</map>
|
63 |
+
<map>
|
64 |
+
<framework name="onnx::Conv_272" output_port_id="onnx::Conv_272" />
|
65 |
+
<IR name="onnx::Conv_272" output_port_id="0" />
|
66 |
+
</map>
|
67 |
+
<map>
|
68 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0" />
|
69 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="2" />
|
70 |
+
</map>
|
71 |
+
<map>
|
72 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0" />
|
73 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="2" />
|
74 |
+
</map>
|
75 |
+
<map>
|
76 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0" />
|
77 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="1" />
|
78 |
+
</map>
|
79 |
+
<map>
|
80 |
+
<framework name="onnx::Conv_275" output_port_id="onnx::Conv_275" />
|
81 |
+
<IR name="onnx::Conv_275" output_port_id="0" />
|
82 |
+
</map>
|
83 |
+
<map>
|
84 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0" />
|
85 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="2" />
|
86 |
+
</map>
|
87 |
+
<map>
|
88 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0" />
|
89 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="1" />
|
90 |
+
</map>
|
91 |
+
<map>
|
92 |
+
<framework name="onnx::Conv_278" output_port_id="onnx::Conv_278" />
|
93 |
+
<IR name="onnx::Conv_278" output_port_id="0" />
|
94 |
+
</map>
|
95 |
+
<map>
|
96 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0" />
|
97 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="2" />
|
98 |
+
</map>
|
99 |
+
<map>
|
100 |
+
<framework name="onnx::Conv_281" output_port_id="onnx::Conv_281" />
|
101 |
+
<IR name="onnx::Conv_281" output_port_id="0" />
|
102 |
+
</map>
|
103 |
+
<map>
|
104 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0" />
|
105 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="2" />
|
106 |
+
</map>
|
107 |
+
<map>
|
108 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0" />
|
109 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="2" />
|
110 |
+
</map>
|
111 |
+
<map>
|
112 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0" />
|
113 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="1" />
|
114 |
+
</map>
|
115 |
+
<map>
|
116 |
+
<framework name="onnx::Conv_284" output_port_id="onnx::Conv_284" />
|
117 |
+
<IR name="onnx::Conv_284" output_port_id="0" />
|
118 |
+
</map>
|
119 |
+
<map>
|
120 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0" />
|
121 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="2" />
|
122 |
+
</map>
|
123 |
+
<map>
|
124 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0" />
|
125 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="1" />
|
126 |
+
</map>
|
127 |
+
<map>
|
128 |
+
<framework name="onnx::Conv_287" output_port_id="onnx::Conv_287" />
|
129 |
+
<IR name="onnx::Conv_287" output_port_id="0" />
|
130 |
+
</map>
|
131 |
+
<map>
|
132 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0" />
|
133 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="2" />
|
134 |
+
</map>
|
135 |
+
<map>
|
136 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0" />
|
137 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="2" />
|
138 |
+
</map>
|
139 |
+
<map>
|
140 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0" />
|
141 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="1" />
|
142 |
+
</map>
|
143 |
+
<map>
|
144 |
+
<framework name="/Shape" output_port_id="/Shape_output_0" />
|
145 |
+
<IR name="/Shape" output_port_id="1" />
|
146 |
+
</map>
|
147 |
+
<map>
|
148 |
+
<framework name="/Constant_1" output_port_id="/Constant_1_output_0" />
|
149 |
+
<IR name="/Constant_1" output_port_id="0" />
|
150 |
+
</map>
|
151 |
+
<map>
|
152 |
+
<framework name="/Constant_2" output_port_id="/Constant_2_output_0" />
|
153 |
+
<IR name="/Constant_2" output_port_id="0" />
|
154 |
+
</map>
|
155 |
+
<map>
|
156 |
+
<framework name="/Slice" output_port_id="/Slice_output_0" />
|
157 |
+
<IR name="/Slice" output_port_id="4" />
|
158 |
+
</map>
|
159 |
+
<map>
|
160 |
+
<framework name="/Constant_3" output_port_id="/Constant_3_output_0" />
|
161 |
+
<IR name="/Constant_3" output_port_id="0" />
|
162 |
+
</map>
|
163 |
+
<map>
|
164 |
+
<framework name="/Concat" output_port_id="/Concat_output_0" />
|
165 |
+
<IR name="/Concat" output_port_id="2" />
|
166 |
+
</map>
|
167 |
+
<map>
|
168 |
+
<framework name="/Resize" output_port_id="/Resize_output_0" />
|
169 |
+
<IR name="/Resize" output_port_id="3" />
|
170 |
+
</map>
|
171 |
+
<map>
|
172 |
+
<framework name="/Concat_1" output_port_id="/Concat_1_output_0" />
|
173 |
+
<IR name="/Concat_1" output_port_id="2" />
|
174 |
+
</map>
|
175 |
+
<map>
|
176 |
+
<framework name="onnx::Conv_290" output_port_id="onnx::Conv_290" />
|
177 |
+
<IR name="onnx::Conv_290" output_port_id="0" />
|
178 |
+
</map>
|
179 |
+
<map>
|
180 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0" />
|
181 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="2" />
|
182 |
+
</map>
|
183 |
+
<map>
|
184 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0" />
|
185 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="1" />
|
186 |
+
</map>
|
187 |
+
<map>
|
188 |
+
<framework name="onnx::Conv_293" output_port_id="onnx::Conv_293" />
|
189 |
+
<IR name="onnx::Conv_293" output_port_id="0" />
|
190 |
+
</map>
|
191 |
+
<map>
|
192 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0" />
|
193 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="2" />
|
194 |
+
</map>
|
195 |
+
<map>
|
196 |
+
<framework name="onnx::Conv_296" output_port_id="onnx::Conv_296" />
|
197 |
+
<IR name="onnx::Conv_296" output_port_id="0" />
|
198 |
+
</map>
|
199 |
+
<map>
|
200 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0" />
|
201 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="2" />
|
202 |
+
</map>
|
203 |
+
<map>
|
204 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0" />
|
205 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="2" />
|
206 |
+
</map>
|
207 |
+
<map>
|
208 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0" />
|
209 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="1" />
|
210 |
+
</map>
|
211 |
+
<map>
|
212 |
+
<framework name="onnx::Conv_299" output_port_id="onnx::Conv_299" />
|
213 |
+
<IR name="onnx::Conv_299" output_port_id="0" />
|
214 |
+
</map>
|
215 |
+
<map>
|
216 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0" />
|
217 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="2" />
|
218 |
+
</map>
|
219 |
+
<map>
|
220 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0" />
|
221 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="1" />
|
222 |
+
</map>
|
223 |
+
<map>
|
224 |
+
<framework name="onnx::Conv_302" output_port_id="onnx::Conv_302" />
|
225 |
+
<IR name="onnx::Conv_302" output_port_id="0" />
|
226 |
+
</map>
|
227 |
+
<map>
|
228 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0" />
|
229 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="2" />
|
230 |
+
</map>
|
231 |
+
<map>
|
232 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0" />
|
233 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="2" />
|
234 |
+
</map>
|
235 |
+
<map>
|
236 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0" />
|
237 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="1" />
|
238 |
+
</map>
|
239 |
+
<map>
|
240 |
+
<framework name="/Shape_3" output_port_id="/Shape_3_output_0" />
|
241 |
+
<IR name="/Shape_3" output_port_id="1" />
|
242 |
+
</map>
|
243 |
+
<map>
|
244 |
+
<framework name="/Constant_9" output_port_id="/Constant_9_output_0" />
|
245 |
+
<IR name="/Constant_9" output_port_id="0" />
|
246 |
+
</map>
|
247 |
+
<map>
|
248 |
+
<framework name="/Constant_10" output_port_id="/Constant_10_output_0" />
|
249 |
+
<IR name="/Constant_10" output_port_id="0" />
|
250 |
+
</map>
|
251 |
+
<map>
|
252 |
+
<framework name="/Slice_1" output_port_id="/Slice_1_output_0" />
|
253 |
+
<IR name="/Slice_1" output_port_id="4" />
|
254 |
+
</map>
|
255 |
+
<map>
|
256 |
+
<framework name="/Shape_1" output_port_id="/Shape_1_output_0" />
|
257 |
+
<IR name="/Shape_1" output_port_id="1" />
|
258 |
+
</map>
|
259 |
+
<map>
|
260 |
+
<framework name="/Shape_1" output_port_id="/Shape_2_output_0" />
|
261 |
+
<IR name="/Shape_1" output_port_id="1" />
|
262 |
+
</map>
|
263 |
+
<map>
|
264 |
+
<framework name="Gather_6092" output_port_id="/Concat_2_output_0" />
|
265 |
+
<IR name="Gather_6092" output_port_id="3" />
|
266 |
+
</map>
|
267 |
+
<map>
|
268 |
+
<framework name="Gather_6092" output_port_id="/Cast_output_0" />
|
269 |
+
<IR name="Gather_6092" output_port_id="3" />
|
270 |
+
</map>
|
271 |
+
<map>
|
272 |
+
<framework name="/Concat_3" output_port_id="/Concat_3_output_0" />
|
273 |
+
<IR name="/Concat_3" output_port_id="2" />
|
274 |
+
</map>
|
275 |
+
<map>
|
276 |
+
<framework name="/Resize_1" output_port_id="/Resize_1_output_0" />
|
277 |
+
<IR name="/Resize_1" output_port_id="3" />
|
278 |
+
</map>
|
279 |
+
<map>
|
280 |
+
<framework name="/Concat_4" output_port_id="/Concat_4_output_0" />
|
281 |
+
<IR name="/Concat_4" output_port_id="2" />
|
282 |
+
</map>
|
283 |
+
<map>
|
284 |
+
<framework name="onnx::Gather_308" output_port_id="onnx::Gather_308" />
|
285 |
+
<IR name="onnx::Gather_308" output_port_id="0" />
|
286 |
+
</map>
|
287 |
+
<map>
|
288 |
+
<framework name="/Gather_2" output_port_id="/Gather_2_output_0" />
|
289 |
+
<IR name="/Gather_2" output_port_id="3" />
|
290 |
+
</map>
|
291 |
+
<map>
|
292 |
+
<framework name="/anomaly_map_generator/Constant" output_port_id="/anomaly_map_generator/Constant_output_0" />
|
293 |
+
<IR name="/anomaly_map_generator/Constant" output_port_id="0" />
|
294 |
+
</map>
|
295 |
+
<map>
|
296 |
+
<framework name="/anomaly_map_generator/Reshape" output_port_id="/anomaly_map_generator/Reshape_output_0" />
|
297 |
+
<IR name="/anomaly_map_generator/Reshape" output_port_id="2" />
|
298 |
+
</map>
|
299 |
+
<map>
|
300 |
+
<framework name="/anomaly_map_generator/Sub" output_port_id="/anomaly_map_generator/Sub_output_0" />
|
301 |
+
<IR name="/anomaly_map_generator/Sub" output_port_id="2" />
|
302 |
+
</map>
|
303 |
+
<map>
|
304 |
+
<framework name="/anomaly_map_generator/Transpose" output_port_id="/anomaly_map_generator/Transpose_output_0" />
|
305 |
+
<IR name="/anomaly_map_generator/Transpose" output_port_id="2" />
|
306 |
+
</map>
|
307 |
+
<map>
|
308 |
+
<framework name="onnx::MatMul_310" output_port_id="onnx::MatMul_310" />
|
309 |
+
<IR name="onnx::MatMul_310" output_port_id="0" />
|
310 |
+
</map>
|
311 |
+
<map>
|
312 |
+
<framework name="/anomaly_map_generator/MatMul" output_port_id="/anomaly_map_generator/MatMul_output_0" />
|
313 |
+
<IR name="/anomaly_map_generator/MatMul" output_port_id="2" />
|
314 |
+
</map>
|
315 |
+
<map>
|
316 |
+
<framework name="/anomaly_map_generator/Mul" output_port_id="/anomaly_map_generator/Mul_output_0" />
|
317 |
+
<IR name="/anomaly_map_generator/Mul" output_port_id="2" />
|
318 |
+
</map>
|
319 |
+
<map>
|
320 |
+
<framework name="/anomaly_map_generator/ReduceSum" output_port_id="/anomaly_map_generator/ReduceSum_output_0" />
|
321 |
+
<IR name="/anomaly_map_generator/ReduceSum" output_port_id="2" />
|
322 |
+
</map>
|
323 |
+
<map>
|
324 |
+
<framework name="/anomaly_map_generator/Constant_1" output_port_id="/anomaly_map_generator/Constant_1_output_0" />
|
325 |
+
<IR name="/anomaly_map_generator/Constant_1" output_port_id="0" />
|
326 |
+
</map>
|
327 |
+
<map>
|
328 |
+
<framework name="/anomaly_map_generator/Reshape_1" output_port_id="/anomaly_map_generator/Reshape_1_output_0" />
|
329 |
+
<IR name="/anomaly_map_generator/Reshape_1" output_port_id="2" />
|
330 |
+
</map>
|
331 |
+
<map>
|
332 |
+
<framework name="/anomaly_map_generator/Clip" output_port_id="/anomaly_map_generator/Clip_output_0" />
|
333 |
+
<IR name="/anomaly_map_generator/Clip" output_port_id="1" />
|
334 |
+
</map>
|
335 |
+
<map>
|
336 |
+
<framework name="/anomaly_map_generator/Sqrt" output_port_id="/anomaly_map_generator/Sqrt_output_0" />
|
337 |
+
<IR name="/anomaly_map_generator/Sqrt" output_port_id="1" />
|
338 |
+
</map>
|
339 |
+
<map>
|
340 |
+
<framework name="/anomaly_map_generator/Shape" output_port_id="/anomaly_map_generator/Shape_output_0" />
|
341 |
+
<IR name="/anomaly_map_generator/Shape" output_port_id="1" />
|
342 |
+
</map>
|
343 |
+
<map>
|
344 |
+
<framework name="/anomaly_map_generator/Constant_4" output_port_id="/anomaly_map_generator/Constant_4_output_0" />
|
345 |
+
<IR name="/anomaly_map_generator/Constant_4" output_port_id="0" />
|
346 |
+
</map>
|
347 |
+
<map>
|
348 |
+
<framework name="/anomaly_map_generator/Constant_5" output_port_id="/anomaly_map_generator/Constant_5_output_0" />
|
349 |
+
<IR name="/anomaly_map_generator/Constant_5" output_port_id="0" />
|
350 |
+
</map>
|
351 |
+
<map>
|
352 |
+
<framework name="/anomaly_map_generator/Slice" output_port_id="/anomaly_map_generator/Slice_output_0" />
|
353 |
+
<IR name="/anomaly_map_generator/Slice" output_port_id="4" />
|
354 |
+
</map>
|
355 |
+
<map>
|
356 |
+
<framework name="/anomaly_map_generator/Constant_6" output_port_id="/anomaly_map_generator/Constant_6_output_0" />
|
357 |
+
<IR name="/anomaly_map_generator/Constant_6" output_port_id="0" />
|
358 |
+
</map>
|
359 |
+
<map>
|
360 |
+
<framework name="/anomaly_map_generator/Concat" output_port_id="/anomaly_map_generator/Concat_output_0" />
|
361 |
+
<IR name="/anomaly_map_generator/Concat" output_port_id="2" />
|
362 |
+
</map>
|
363 |
+
<map>
|
364 |
+
<framework name="/anomaly_map_generator/Resize" output_port_id="/anomaly_map_generator/Resize_output_0" />
|
365 |
+
<IR name="/anomaly_map_generator/Resize" output_port_id="3" />
|
366 |
+
</map>
|
367 |
+
<map>
|
368 |
+
<framework name="/anomaly_map_generator/blur/Pad" output_port_id="/anomaly_map_generator/blur/Pad_output_0" />
|
369 |
+
<IR name="/anomaly_map_generator/blur/Pad" output_port_id="4" />
|
370 |
+
</map>
|
371 |
+
<map>
|
372 |
+
<framework name="anomaly_map_generator.blur.kernel" output_port_id="anomaly_map_generator.blur.kernel" />
|
373 |
+
<IR name="anomaly_map_generator.blur.kernel" output_port_id="0" />
|
374 |
+
</map>
|
375 |
+
<map>
|
376 |
+
<framework name="/anomaly_map_generator/blur/Conv" output_port_id="/anomaly_map_generator/blur/Conv_output_0" />
|
377 |
+
<IR name="/anomaly_map_generator/blur/Conv" output_port_id="2" />
|
378 |
+
</map>
|
379 |
+
<map>
|
380 |
+
<framework name="/anomaly_map_generator/blur/Constant_8" output_port_id="/anomaly_map_generator/blur/Constant_8_output_0" />
|
381 |
+
<IR name="/anomaly_map_generator/blur/Constant_8" output_port_id="0" />
|
382 |
+
</map>
|
383 |
+
<map>
|
384 |
+
<framework name="output" output_port_id="output" />
|
385 |
+
<IR name="output" output_port_id="2" />
|
386 |
+
</map>
|
387 |
+
</mapping>
|
cubes/run/weights/openvino/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00bd7e7262e71aed2bc320412e13957efba5e40d380dd215267ef52cf73e73a8
|
3 |
+
size 176626689
|
cubes/run/weights/openvino/model.xml
ADDED
@@ -0,0 +1,2703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="torch_jit" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="1,3,256,256" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>1</dim>
|
9 |
+
<dim>3</dim>
|
10 |
+
<dim>256</dim>
|
11 |
+
<dim>256</dim>
|
12 |
+
</port>
|
13 |
+
</output>
|
14 |
+
</layer>
|
15 |
+
<layer id="1" name="onnx::Conv_260" type="Const" version="opset1">
|
16 |
+
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
|
17 |
+
<output>
|
18 |
+
<port id="0" precision="FP32" names="onnx::Conv_260">
|
19 |
+
<dim>64</dim>
|
20 |
+
<dim>3</dim>
|
21 |
+
<dim>7</dim>
|
22 |
+
<dim>7</dim>
|
23 |
+
</port>
|
24 |
+
</output>
|
25 |
+
</layer>
|
26 |
+
<layer id="2" name="/feature_extractor/feature_extractor/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
27 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP32">
|
30 |
+
<dim>1</dim>
|
31 |
+
<dim>3</dim>
|
32 |
+
<dim>256</dim>
|
33 |
+
<dim>256</dim>
|
34 |
+
</port>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>64</dim>
|
37 |
+
<dim>3</dim>
|
38 |
+
<dim>7</dim>
|
39 |
+
<dim>7</dim>
|
40 |
+
</port>
|
41 |
+
</input>
|
42 |
+
<output>
|
43 |
+
<port id="2" precision="FP32">
|
44 |
+
<dim>1</dim>
|
45 |
+
<dim>64</dim>
|
46 |
+
<dim>128</dim>
|
47 |
+
<dim>128</dim>
|
48 |
+
</port>
|
49 |
+
</output>
|
50 |
+
</layer>
|
51 |
+
<layer id="3" name="Reshape_55" type="Const" version="opset1">
|
52 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
|
53 |
+
<output>
|
54 |
+
<port id="0" precision="FP32">
|
55 |
+
<dim>1</dim>
|
56 |
+
<dim>64</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
<dim>1</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="/feature_extractor/feature_extractor/conv1/Conv" type="Add" version="opset1">
|
63 |
+
<data auto_broadcast="numpy" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="FP32">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>64</dim>
|
68 |
+
<dim>128</dim>
|
69 |
+
<dim>128</dim>
|
70 |
+
</port>
|
71 |
+
<port id="1" precision="FP32">
|
72 |
+
<dim>1</dim>
|
73 |
+
<dim>64</dim>
|
74 |
+
<dim>1</dim>
|
75 |
+
<dim>1</dim>
|
76 |
+
</port>
|
77 |
+
</input>
|
78 |
+
<output>
|
79 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/conv1/Conv_output_0">
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>64</dim>
|
82 |
+
<dim>128</dim>
|
83 |
+
<dim>128</dim>
|
84 |
+
</port>
|
85 |
+
</output>
|
86 |
+
</layer>
|
87 |
+
<layer id="5" name="/feature_extractor/feature_extractor/act1/Relu" type="ReLU" version="opset1">
|
88 |
+
<input>
|
89 |
+
<port id="0" precision="FP32">
|
90 |
+
<dim>1</dim>
|
91 |
+
<dim>64</dim>
|
92 |
+
<dim>128</dim>
|
93 |
+
<dim>128</dim>
|
94 |
+
</port>
|
95 |
+
</input>
|
96 |
+
<output>
|
97 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/act1/Relu_output_0">
|
98 |
+
<dim>1</dim>
|
99 |
+
<dim>64</dim>
|
100 |
+
<dim>128</dim>
|
101 |
+
<dim>128</dim>
|
102 |
+
</port>
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="6" name="/feature_extractor/feature_extractor/maxpool/MaxPool" type="MaxPool" version="opset8">
|
106 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="0" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="FP32">
|
109 |
+
<dim>1</dim>
|
110 |
+
<dim>64</dim>
|
111 |
+
<dim>128</dim>
|
112 |
+
<dim>128</dim>
|
113 |
+
</port>
|
114 |
+
</input>
|
115 |
+
<output>
|
116 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0">
|
117 |
+
<dim>1</dim>
|
118 |
+
<dim>64</dim>
|
119 |
+
<dim>64</dim>
|
120 |
+
<dim>64</dim>
|
121 |
+
</port>
|
122 |
+
<port id="2" precision="I64">
|
123 |
+
<dim>1</dim>
|
124 |
+
<dim>64</dim>
|
125 |
+
<dim>64</dim>
|
126 |
+
<dim>64</dim>
|
127 |
+
</port>
|
128 |
+
</output>
|
129 |
+
</layer>
|
130 |
+
<layer id="7" name="onnx::Conv_263" type="Const" version="opset1">
|
131 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="37888" size="147456" />
|
132 |
+
<output>
|
133 |
+
<port id="0" precision="FP32" names="onnx::Conv_263">
|
134 |
+
<dim>64</dim>
|
135 |
+
<dim>64</dim>
|
136 |
+
<dim>3</dim>
|
137 |
+
<dim>3</dim>
|
138 |
+
</port>
|
139 |
+
</output>
|
140 |
+
</layer>
|
141 |
+
<layer id="8" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
142 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="FP32">
|
145 |
+
<dim>1</dim>
|
146 |
+
<dim>64</dim>
|
147 |
+
<dim>64</dim>
|
148 |
+
<dim>64</dim>
|
149 |
+
</port>
|
150 |
+
<port id="1" precision="FP32">
|
151 |
+
<dim>64</dim>
|
152 |
+
<dim>64</dim>
|
153 |
+
<dim>3</dim>
|
154 |
+
<dim>3</dim>
|
155 |
+
</port>
|
156 |
+
</input>
|
157 |
+
<output>
|
158 |
+
<port id="2" precision="FP32">
|
159 |
+
<dim>1</dim>
|
160 |
+
<dim>64</dim>
|
161 |
+
<dim>64</dim>
|
162 |
+
<dim>64</dim>
|
163 |
+
</port>
|
164 |
+
</output>
|
165 |
+
</layer>
|
166 |
+
<layer id="9" name="Reshape_105" type="Const" version="opset1">
|
167 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="185344" size="256" />
|
168 |
+
<output>
|
169 |
+
<port id="0" precision="FP32">
|
170 |
+
<dim>1</dim>
|
171 |
+
<dim>64</dim>
|
172 |
+
<dim>1</dim>
|
173 |
+
<dim>1</dim>
|
174 |
+
</port>
|
175 |
+
</output>
|
176 |
+
</layer>
|
177 |
+
<layer id="10" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" type="Add" version="opset1">
|
178 |
+
<data auto_broadcast="numpy" />
|
179 |
+
<input>
|
180 |
+
<port id="0" precision="FP32">
|
181 |
+
<dim>1</dim>
|
182 |
+
<dim>64</dim>
|
183 |
+
<dim>64</dim>
|
184 |
+
<dim>64</dim>
|
185 |
+
</port>
|
186 |
+
<port id="1" precision="FP32">
|
187 |
+
<dim>1</dim>
|
188 |
+
<dim>64</dim>
|
189 |
+
<dim>1</dim>
|
190 |
+
<dim>1</dim>
|
191 |
+
</port>
|
192 |
+
</input>
|
193 |
+
<output>
|
194 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0">
|
195 |
+
<dim>1</dim>
|
196 |
+
<dim>64</dim>
|
197 |
+
<dim>64</dim>
|
198 |
+
<dim>64</dim>
|
199 |
+
</port>
|
200 |
+
</output>
|
201 |
+
</layer>
|
202 |
+
<layer id="11" name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" type="ReLU" version="opset1">
|
203 |
+
<input>
|
204 |
+
<port id="0" precision="FP32">
|
205 |
+
<dim>1</dim>
|
206 |
+
<dim>64</dim>
|
207 |
+
<dim>64</dim>
|
208 |
+
<dim>64</dim>
|
209 |
+
</port>
|
210 |
+
</input>
|
211 |
+
<output>
|
212 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0">
|
213 |
+
<dim>1</dim>
|
214 |
+
<dim>64</dim>
|
215 |
+
<dim>64</dim>
|
216 |
+
<dim>64</dim>
|
217 |
+
</port>
|
218 |
+
</output>
|
219 |
+
</layer>
|
220 |
+
<layer id="12" name="onnx::Conv_266" type="Const" version="opset1">
|
221 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="185600" size="147456" />
|
222 |
+
<output>
|
223 |
+
<port id="0" precision="FP32" names="onnx::Conv_266">
|
224 |
+
<dim>64</dim>
|
225 |
+
<dim>64</dim>
|
226 |
+
<dim>3</dim>
|
227 |
+
<dim>3</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="13" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
232 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
233 |
+
<input>
|
234 |
+
<port id="0" precision="FP32">
|
235 |
+
<dim>1</dim>
|
236 |
+
<dim>64</dim>
|
237 |
+
<dim>64</dim>
|
238 |
+
<dim>64</dim>
|
239 |
+
</port>
|
240 |
+
<port id="1" precision="FP32">
|
241 |
+
<dim>64</dim>
|
242 |
+
<dim>64</dim>
|
243 |
+
<dim>3</dim>
|
244 |
+
<dim>3</dim>
|
245 |
+
</port>
|
246 |
+
</input>
|
247 |
+
<output>
|
248 |
+
<port id="2" precision="FP32">
|
249 |
+
<dim>1</dim>
|
250 |
+
<dim>64</dim>
|
251 |
+
<dim>64</dim>
|
252 |
+
<dim>64</dim>
|
253 |
+
</port>
|
254 |
+
</output>
|
255 |
+
</layer>
|
256 |
+
<layer id="14" name="Reshape_154" type="Const" version="opset1">
|
257 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="333056" size="256" />
|
258 |
+
<output>
|
259 |
+
<port id="0" precision="FP32">
|
260 |
+
<dim>1</dim>
|
261 |
+
<dim>64</dim>
|
262 |
+
<dim>1</dim>
|
263 |
+
<dim>1</dim>
|
264 |
+
</port>
|
265 |
+
</output>
|
266 |
+
</layer>
|
267 |
+
<layer id="15" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" type="Add" version="opset1">
|
268 |
+
<data auto_broadcast="numpy" />
|
269 |
+
<input>
|
270 |
+
<port id="0" precision="FP32">
|
271 |
+
<dim>1</dim>
|
272 |
+
<dim>64</dim>
|
273 |
+
<dim>64</dim>
|
274 |
+
<dim>64</dim>
|
275 |
+
</port>
|
276 |
+
<port id="1" precision="FP32">
|
277 |
+
<dim>1</dim>
|
278 |
+
<dim>64</dim>
|
279 |
+
<dim>1</dim>
|
280 |
+
<dim>1</dim>
|
281 |
+
</port>
|
282 |
+
</input>
|
283 |
+
<output>
|
284 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0">
|
285 |
+
<dim>1</dim>
|
286 |
+
<dim>64</dim>
|
287 |
+
<dim>64</dim>
|
288 |
+
<dim>64</dim>
|
289 |
+
</port>
|
290 |
+
</output>
|
291 |
+
</layer>
|
292 |
+
<layer id="16" name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" type="Add" version="opset1">
|
293 |
+
<data auto_broadcast="numpy" />
|
294 |
+
<input>
|
295 |
+
<port id="0" precision="FP32">
|
296 |
+
<dim>1</dim>
|
297 |
+
<dim>64</dim>
|
298 |
+
<dim>64</dim>
|
299 |
+
<dim>64</dim>
|
300 |
+
</port>
|
301 |
+
<port id="1" precision="FP32">
|
302 |
+
<dim>1</dim>
|
303 |
+
<dim>64</dim>
|
304 |
+
<dim>64</dim>
|
305 |
+
<dim>64</dim>
|
306 |
+
</port>
|
307 |
+
</input>
|
308 |
+
<output>
|
309 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0">
|
310 |
+
<dim>1</dim>
|
311 |
+
<dim>64</dim>
|
312 |
+
<dim>64</dim>
|
313 |
+
<dim>64</dim>
|
314 |
+
</port>
|
315 |
+
</output>
|
316 |
+
</layer>
|
317 |
+
<layer id="17" name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" type="ReLU" version="opset1">
|
318 |
+
<input>
|
319 |
+
<port id="0" precision="FP32">
|
320 |
+
<dim>1</dim>
|
321 |
+
<dim>64</dim>
|
322 |
+
<dim>64</dim>
|
323 |
+
<dim>64</dim>
|
324 |
+
</port>
|
325 |
+
</input>
|
326 |
+
<output>
|
327 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0">
|
328 |
+
<dim>1</dim>
|
329 |
+
<dim>64</dim>
|
330 |
+
<dim>64</dim>
|
331 |
+
<dim>64</dim>
|
332 |
+
</port>
|
333 |
+
</output>
|
334 |
+
</layer>
|
335 |
+
<layer id="18" name="onnx::Conv_269" type="Const" version="opset1">
|
336 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="333312" size="147456" />
|
337 |
+
<output>
|
338 |
+
<port id="0" precision="FP32" names="onnx::Conv_269">
|
339 |
+
<dim>64</dim>
|
340 |
+
<dim>64</dim>
|
341 |
+
<dim>3</dim>
|
342 |
+
<dim>3</dim>
|
343 |
+
</port>
|
344 |
+
</output>
|
345 |
+
</layer>
|
346 |
+
<layer id="19" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
347 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
348 |
+
<input>
|
349 |
+
<port id="0" precision="FP32">
|
350 |
+
<dim>1</dim>
|
351 |
+
<dim>64</dim>
|
352 |
+
<dim>64</dim>
|
353 |
+
<dim>64</dim>
|
354 |
+
</port>
|
355 |
+
<port id="1" precision="FP32">
|
356 |
+
<dim>64</dim>
|
357 |
+
<dim>64</dim>
|
358 |
+
<dim>3</dim>
|
359 |
+
<dim>3</dim>
|
360 |
+
</port>
|
361 |
+
</input>
|
362 |
+
<output>
|
363 |
+
<port id="2" precision="FP32">
|
364 |
+
<dim>1</dim>
|
365 |
+
<dim>64</dim>
|
366 |
+
<dim>64</dim>
|
367 |
+
<dim>64</dim>
|
368 |
+
</port>
|
369 |
+
</output>
|
370 |
+
</layer>
|
371 |
+
<layer id="20" name="Reshape_204" type="Const" version="opset1">
|
372 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="480768" size="256" />
|
373 |
+
<output>
|
374 |
+
<port id="0" precision="FP32">
|
375 |
+
<dim>1</dim>
|
376 |
+
<dim>64</dim>
|
377 |
+
<dim>1</dim>
|
378 |
+
<dim>1</dim>
|
379 |
+
</port>
|
380 |
+
</output>
|
381 |
+
</layer>
|
382 |
+
<layer id="21" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" type="Add" version="opset1">
|
383 |
+
<data auto_broadcast="numpy" />
|
384 |
+
<input>
|
385 |
+
<port id="0" precision="FP32">
|
386 |
+
<dim>1</dim>
|
387 |
+
<dim>64</dim>
|
388 |
+
<dim>64</dim>
|
389 |
+
<dim>64</dim>
|
390 |
+
</port>
|
391 |
+
<port id="1" precision="FP32">
|
392 |
+
<dim>1</dim>
|
393 |
+
<dim>64</dim>
|
394 |
+
<dim>1</dim>
|
395 |
+
<dim>1</dim>
|
396 |
+
</port>
|
397 |
+
</input>
|
398 |
+
<output>
|
399 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0">
|
400 |
+
<dim>1</dim>
|
401 |
+
<dim>64</dim>
|
402 |
+
<dim>64</dim>
|
403 |
+
<dim>64</dim>
|
404 |
+
</port>
|
405 |
+
</output>
|
406 |
+
</layer>
|
407 |
+
<layer id="22" name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" type="ReLU" version="opset1">
|
408 |
+
<input>
|
409 |
+
<port id="0" precision="FP32">
|
410 |
+
<dim>1</dim>
|
411 |
+
<dim>64</dim>
|
412 |
+
<dim>64</dim>
|
413 |
+
<dim>64</dim>
|
414 |
+
</port>
|
415 |
+
</input>
|
416 |
+
<output>
|
417 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0">
|
418 |
+
<dim>1</dim>
|
419 |
+
<dim>64</dim>
|
420 |
+
<dim>64</dim>
|
421 |
+
<dim>64</dim>
|
422 |
+
</port>
|
423 |
+
</output>
|
424 |
+
</layer>
|
425 |
+
<layer id="23" name="onnx::Conv_272" type="Const" version="opset1">
|
426 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="481024" size="147456" />
|
427 |
+
<output>
|
428 |
+
<port id="0" precision="FP32" names="onnx::Conv_272">
|
429 |
+
<dim>64</dim>
|
430 |
+
<dim>64</dim>
|
431 |
+
<dim>3</dim>
|
432 |
+
<dim>3</dim>
|
433 |
+
</port>
|
434 |
+
</output>
|
435 |
+
</layer>
|
436 |
+
<layer id="24" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
437 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
438 |
+
<input>
|
439 |
+
<port id="0" precision="FP32">
|
440 |
+
<dim>1</dim>
|
441 |
+
<dim>64</dim>
|
442 |
+
<dim>64</dim>
|
443 |
+
<dim>64</dim>
|
444 |
+
</port>
|
445 |
+
<port id="1" precision="FP32">
|
446 |
+
<dim>64</dim>
|
447 |
+
<dim>64</dim>
|
448 |
+
<dim>3</dim>
|
449 |
+
<dim>3</dim>
|
450 |
+
</port>
|
451 |
+
</input>
|
452 |
+
<output>
|
453 |
+
<port id="2" precision="FP32">
|
454 |
+
<dim>1</dim>
|
455 |
+
<dim>64</dim>
|
456 |
+
<dim>64</dim>
|
457 |
+
<dim>64</dim>
|
458 |
+
</port>
|
459 |
+
</output>
|
460 |
+
</layer>
|
461 |
+
<layer id="25" name="Reshape_253" type="Const" version="opset1">
|
462 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="628480" size="256" />
|
463 |
+
<output>
|
464 |
+
<port id="0" precision="FP32">
|
465 |
+
<dim>1</dim>
|
466 |
+
<dim>64</dim>
|
467 |
+
<dim>1</dim>
|
468 |
+
<dim>1</dim>
|
469 |
+
</port>
|
470 |
+
</output>
|
471 |
+
</layer>
|
472 |
+
<layer id="26" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" type="Add" version="opset1">
|
473 |
+
<data auto_broadcast="numpy" />
|
474 |
+
<input>
|
475 |
+
<port id="0" precision="FP32">
|
476 |
+
<dim>1</dim>
|
477 |
+
<dim>64</dim>
|
478 |
+
<dim>64</dim>
|
479 |
+
<dim>64</dim>
|
480 |
+
</port>
|
481 |
+
<port id="1" precision="FP32">
|
482 |
+
<dim>1</dim>
|
483 |
+
<dim>64</dim>
|
484 |
+
<dim>1</dim>
|
485 |
+
<dim>1</dim>
|
486 |
+
</port>
|
487 |
+
</input>
|
488 |
+
<output>
|
489 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0">
|
490 |
+
<dim>1</dim>
|
491 |
+
<dim>64</dim>
|
492 |
+
<dim>64</dim>
|
493 |
+
<dim>64</dim>
|
494 |
+
</port>
|
495 |
+
</output>
|
496 |
+
</layer>
|
497 |
+
<layer id="27" name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" type="Add" version="opset1">
|
498 |
+
<data auto_broadcast="numpy" />
|
499 |
+
<input>
|
500 |
+
<port id="0" precision="FP32">
|
501 |
+
<dim>1</dim>
|
502 |
+
<dim>64</dim>
|
503 |
+
<dim>64</dim>
|
504 |
+
<dim>64</dim>
|
505 |
+
</port>
|
506 |
+
<port id="1" precision="FP32">
|
507 |
+
<dim>1</dim>
|
508 |
+
<dim>64</dim>
|
509 |
+
<dim>64</dim>
|
510 |
+
<dim>64</dim>
|
511 |
+
</port>
|
512 |
+
</input>
|
513 |
+
<output>
|
514 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0">
|
515 |
+
<dim>1</dim>
|
516 |
+
<dim>64</dim>
|
517 |
+
<dim>64</dim>
|
518 |
+
<dim>64</dim>
|
519 |
+
</port>
|
520 |
+
</output>
|
521 |
+
</layer>
|
522 |
+
<layer id="28" name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" type="ReLU" version="opset1">
|
523 |
+
<input>
|
524 |
+
<port id="0" precision="FP32">
|
525 |
+
<dim>1</dim>
|
526 |
+
<dim>64</dim>
|
527 |
+
<dim>64</dim>
|
528 |
+
<dim>64</dim>
|
529 |
+
</port>
|
530 |
+
</input>
|
531 |
+
<output>
|
532 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0">
|
533 |
+
<dim>1</dim>
|
534 |
+
<dim>64</dim>
|
535 |
+
<dim>64</dim>
|
536 |
+
<dim>64</dim>
|
537 |
+
</port>
|
538 |
+
</output>
|
539 |
+
</layer>
|
540 |
+
<layer id="29" name="onnx::Conv_275" type="Const" version="opset1">
|
541 |
+
<data element_type="f32" shape="128, 64, 3, 3" offset="628736" size="294912" />
|
542 |
+
<output>
|
543 |
+
<port id="0" precision="FP32" names="onnx::Conv_275">
|
544 |
+
<dim>128</dim>
|
545 |
+
<dim>64</dim>
|
546 |
+
<dim>3</dim>
|
547 |
+
<dim>3</dim>
|
548 |
+
</port>
|
549 |
+
</output>
|
550 |
+
</layer>
|
551 |
+
<layer id="30" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
552 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
553 |
+
<input>
|
554 |
+
<port id="0" precision="FP32">
|
555 |
+
<dim>1</dim>
|
556 |
+
<dim>64</dim>
|
557 |
+
<dim>64</dim>
|
558 |
+
<dim>64</dim>
|
559 |
+
</port>
|
560 |
+
<port id="1" precision="FP32">
|
561 |
+
<dim>128</dim>
|
562 |
+
<dim>64</dim>
|
563 |
+
<dim>3</dim>
|
564 |
+
<dim>3</dim>
|
565 |
+
</port>
|
566 |
+
</input>
|
567 |
+
<output>
|
568 |
+
<port id="2" precision="FP32">
|
569 |
+
<dim>1</dim>
|
570 |
+
<dim>128</dim>
|
571 |
+
<dim>32</dim>
|
572 |
+
<dim>32</dim>
|
573 |
+
</port>
|
574 |
+
</output>
|
575 |
+
</layer>
|
576 |
+
<layer id="31" name="Reshape_303" type="Const" version="opset1">
|
577 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="923648" size="512" />
|
578 |
+
<output>
|
579 |
+
<port id="0" precision="FP32">
|
580 |
+
<dim>1</dim>
|
581 |
+
<dim>128</dim>
|
582 |
+
<dim>1</dim>
|
583 |
+
<dim>1</dim>
|
584 |
+
</port>
|
585 |
+
</output>
|
586 |
+
</layer>
|
587 |
+
<layer id="32" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" type="Add" version="opset1">
|
588 |
+
<data auto_broadcast="numpy" />
|
589 |
+
<input>
|
590 |
+
<port id="0" precision="FP32">
|
591 |
+
<dim>1</dim>
|
592 |
+
<dim>128</dim>
|
593 |
+
<dim>32</dim>
|
594 |
+
<dim>32</dim>
|
595 |
+
</port>
|
596 |
+
<port id="1" precision="FP32">
|
597 |
+
<dim>1</dim>
|
598 |
+
<dim>128</dim>
|
599 |
+
<dim>1</dim>
|
600 |
+
<dim>1</dim>
|
601 |
+
</port>
|
602 |
+
</input>
|
603 |
+
<output>
|
604 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0">
|
605 |
+
<dim>1</dim>
|
606 |
+
<dim>128</dim>
|
607 |
+
<dim>32</dim>
|
608 |
+
<dim>32</dim>
|
609 |
+
</port>
|
610 |
+
</output>
|
611 |
+
</layer>
|
612 |
+
<layer id="33" name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" type="ReLU" version="opset1">
|
613 |
+
<input>
|
614 |
+
<port id="0" precision="FP32">
|
615 |
+
<dim>1</dim>
|
616 |
+
<dim>128</dim>
|
617 |
+
<dim>32</dim>
|
618 |
+
<dim>32</dim>
|
619 |
+
</port>
|
620 |
+
</input>
|
621 |
+
<output>
|
622 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0">
|
623 |
+
<dim>1</dim>
|
624 |
+
<dim>128</dim>
|
625 |
+
<dim>32</dim>
|
626 |
+
<dim>32</dim>
|
627 |
+
</port>
|
628 |
+
</output>
|
629 |
+
</layer>
|
630 |
+
<layer id="34" name="onnx::Conv_278" type="Const" version="opset1">
|
631 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="924160" size="589824" />
|
632 |
+
<output>
|
633 |
+
<port id="0" precision="FP32" names="onnx::Conv_278">
|
634 |
+
<dim>128</dim>
|
635 |
+
<dim>128</dim>
|
636 |
+
<dim>3</dim>
|
637 |
+
<dim>3</dim>
|
638 |
+
</port>
|
639 |
+
</output>
|
640 |
+
</layer>
|
641 |
+
<layer id="35" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
642 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
643 |
+
<input>
|
644 |
+
<port id="0" precision="FP32">
|
645 |
+
<dim>1</dim>
|
646 |
+
<dim>128</dim>
|
647 |
+
<dim>32</dim>
|
648 |
+
<dim>32</dim>
|
649 |
+
</port>
|
650 |
+
<port id="1" precision="FP32">
|
651 |
+
<dim>128</dim>
|
652 |
+
<dim>128</dim>
|
653 |
+
<dim>3</dim>
|
654 |
+
<dim>3</dim>
|
655 |
+
</port>
|
656 |
+
</input>
|
657 |
+
<output>
|
658 |
+
<port id="2" precision="FP32">
|
659 |
+
<dim>1</dim>
|
660 |
+
<dim>128</dim>
|
661 |
+
<dim>32</dim>
|
662 |
+
<dim>32</dim>
|
663 |
+
</port>
|
664 |
+
</output>
|
665 |
+
</layer>
|
666 |
+
<layer id="36" name="Reshape_352" type="Const" version="opset1">
|
667 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1513984" size="512" />
|
668 |
+
<output>
|
669 |
+
<port id="0" precision="FP32">
|
670 |
+
<dim>1</dim>
|
671 |
+
<dim>128</dim>
|
672 |
+
<dim>1</dim>
|
673 |
+
<dim>1</dim>
|
674 |
+
</port>
|
675 |
+
</output>
|
676 |
+
</layer>
|
677 |
+
<layer id="37" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" type="Add" version="opset1">
|
678 |
+
<data auto_broadcast="numpy" />
|
679 |
+
<input>
|
680 |
+
<port id="0" precision="FP32">
|
681 |
+
<dim>1</dim>
|
682 |
+
<dim>128</dim>
|
683 |
+
<dim>32</dim>
|
684 |
+
<dim>32</dim>
|
685 |
+
</port>
|
686 |
+
<port id="1" precision="FP32">
|
687 |
+
<dim>1</dim>
|
688 |
+
<dim>128</dim>
|
689 |
+
<dim>1</dim>
|
690 |
+
<dim>1</dim>
|
691 |
+
</port>
|
692 |
+
</input>
|
693 |
+
<output>
|
694 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0">
|
695 |
+
<dim>1</dim>
|
696 |
+
<dim>128</dim>
|
697 |
+
<dim>32</dim>
|
698 |
+
<dim>32</dim>
|
699 |
+
</port>
|
700 |
+
</output>
|
701 |
+
</layer>
|
702 |
+
<layer id="38" name="onnx::Conv_281" type="Const" version="opset1">
|
703 |
+
<data element_type="f32" shape="128, 64, 1, 1" offset="1514496" size="32768" />
|
704 |
+
<output>
|
705 |
+
<port id="0" precision="FP32" names="onnx::Conv_281">
|
706 |
+
<dim>128</dim>
|
707 |
+
<dim>64</dim>
|
708 |
+
<dim>1</dim>
|
709 |
+
<dim>1</dim>
|
710 |
+
</port>
|
711 |
+
</output>
|
712 |
+
</layer>
|
713 |
+
<layer id="39" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
714 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
715 |
+
<input>
|
716 |
+
<port id="0" precision="FP32">
|
717 |
+
<dim>1</dim>
|
718 |
+
<dim>64</dim>
|
719 |
+
<dim>64</dim>
|
720 |
+
<dim>64</dim>
|
721 |
+
</port>
|
722 |
+
<port id="1" precision="FP32">
|
723 |
+
<dim>128</dim>
|
724 |
+
<dim>64</dim>
|
725 |
+
<dim>1</dim>
|
726 |
+
<dim>1</dim>
|
727 |
+
</port>
|
728 |
+
</input>
|
729 |
+
<output>
|
730 |
+
<port id="2" precision="FP32">
|
731 |
+
<dim>1</dim>
|
732 |
+
<dim>128</dim>
|
733 |
+
<dim>32</dim>
|
734 |
+
<dim>32</dim>
|
735 |
+
</port>
|
736 |
+
</output>
|
737 |
+
</layer>
|
738 |
+
<layer id="40" name="Reshape_400" type="Const" version="opset1">
|
739 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1547264" size="512" />
|
740 |
+
<output>
|
741 |
+
<port id="0" precision="FP32">
|
742 |
+
<dim>1</dim>
|
743 |
+
<dim>128</dim>
|
744 |
+
<dim>1</dim>
|
745 |
+
<dim>1</dim>
|
746 |
+
</port>
|
747 |
+
</output>
|
748 |
+
</layer>
|
749 |
+
<layer id="41" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
750 |
+
<data auto_broadcast="numpy" />
|
751 |
+
<input>
|
752 |
+
<port id="0" precision="FP32">
|
753 |
+
<dim>1</dim>
|
754 |
+
<dim>128</dim>
|
755 |
+
<dim>32</dim>
|
756 |
+
<dim>32</dim>
|
757 |
+
</port>
|
758 |
+
<port id="1" precision="FP32">
|
759 |
+
<dim>1</dim>
|
760 |
+
<dim>128</dim>
|
761 |
+
<dim>1</dim>
|
762 |
+
<dim>1</dim>
|
763 |
+
</port>
|
764 |
+
</input>
|
765 |
+
<output>
|
766 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0">
|
767 |
+
<dim>1</dim>
|
768 |
+
<dim>128</dim>
|
769 |
+
<dim>32</dim>
|
770 |
+
<dim>32</dim>
|
771 |
+
</port>
|
772 |
+
</output>
|
773 |
+
</layer>
|
774 |
+
<layer id="42" name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" type="Add" version="opset1">
|
775 |
+
<data auto_broadcast="numpy" />
|
776 |
+
<input>
|
777 |
+
<port id="0" precision="FP32">
|
778 |
+
<dim>1</dim>
|
779 |
+
<dim>128</dim>
|
780 |
+
<dim>32</dim>
|
781 |
+
<dim>32</dim>
|
782 |
+
</port>
|
783 |
+
<port id="1" precision="FP32">
|
784 |
+
<dim>1</dim>
|
785 |
+
<dim>128</dim>
|
786 |
+
<dim>32</dim>
|
787 |
+
<dim>32</dim>
|
788 |
+
</port>
|
789 |
+
</input>
|
790 |
+
<output>
|
791 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0">
|
792 |
+
<dim>1</dim>
|
793 |
+
<dim>128</dim>
|
794 |
+
<dim>32</dim>
|
795 |
+
<dim>32</dim>
|
796 |
+
</port>
|
797 |
+
</output>
|
798 |
+
</layer>
|
799 |
+
<layer id="43" name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" type="ReLU" version="opset1">
|
800 |
+
<input>
|
801 |
+
<port id="0" precision="FP32">
|
802 |
+
<dim>1</dim>
|
803 |
+
<dim>128</dim>
|
804 |
+
<dim>32</dim>
|
805 |
+
<dim>32</dim>
|
806 |
+
</port>
|
807 |
+
</input>
|
808 |
+
<output>
|
809 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0">
|
810 |
+
<dim>1</dim>
|
811 |
+
<dim>128</dim>
|
812 |
+
<dim>32</dim>
|
813 |
+
<dim>32</dim>
|
814 |
+
</port>
|
815 |
+
</output>
|
816 |
+
</layer>
|
817 |
+
<layer id="44" name="onnx::Conv_284" type="Const" version="opset1">
|
818 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="1547776" size="589824" />
|
819 |
+
<output>
|
820 |
+
<port id="0" precision="FP32" names="onnx::Conv_284">
|
821 |
+
<dim>128</dim>
|
822 |
+
<dim>128</dim>
|
823 |
+
<dim>3</dim>
|
824 |
+
<dim>3</dim>
|
825 |
+
</port>
|
826 |
+
</output>
|
827 |
+
</layer>
|
828 |
+
<layer id="45" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
829 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
830 |
+
<input>
|
831 |
+
<port id="0" precision="FP32">
|
832 |
+
<dim>1</dim>
|
833 |
+
<dim>128</dim>
|
834 |
+
<dim>32</dim>
|
835 |
+
<dim>32</dim>
|
836 |
+
</port>
|
837 |
+
<port id="1" precision="FP32">
|
838 |
+
<dim>128</dim>
|
839 |
+
<dim>128</dim>
|
840 |
+
<dim>3</dim>
|
841 |
+
<dim>3</dim>
|
842 |
+
</port>
|
843 |
+
</input>
|
844 |
+
<output>
|
845 |
+
<port id="2" precision="FP32">
|
846 |
+
<dim>1</dim>
|
847 |
+
<dim>128</dim>
|
848 |
+
<dim>32</dim>
|
849 |
+
<dim>32</dim>
|
850 |
+
</port>
|
851 |
+
</output>
|
852 |
+
</layer>
|
853 |
+
<layer id="46" name="Reshape_450" type="Const" version="opset1">
|
854 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2137600" size="512" />
|
855 |
+
<output>
|
856 |
+
<port id="0" precision="FP32">
|
857 |
+
<dim>1</dim>
|
858 |
+
<dim>128</dim>
|
859 |
+
<dim>1</dim>
|
860 |
+
<dim>1</dim>
|
861 |
+
</port>
|
862 |
+
</output>
|
863 |
+
</layer>
|
864 |
+
<layer id="47" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" type="Add" version="opset1">
|
865 |
+
<data auto_broadcast="numpy" />
|
866 |
+
<input>
|
867 |
+
<port id="0" precision="FP32">
|
868 |
+
<dim>1</dim>
|
869 |
+
<dim>128</dim>
|
870 |
+
<dim>32</dim>
|
871 |
+
<dim>32</dim>
|
872 |
+
</port>
|
873 |
+
<port id="1" precision="FP32">
|
874 |
+
<dim>1</dim>
|
875 |
+
<dim>128</dim>
|
876 |
+
<dim>1</dim>
|
877 |
+
<dim>1</dim>
|
878 |
+
</port>
|
879 |
+
</input>
|
880 |
+
<output>
|
881 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0">
|
882 |
+
<dim>1</dim>
|
883 |
+
<dim>128</dim>
|
884 |
+
<dim>32</dim>
|
885 |
+
<dim>32</dim>
|
886 |
+
</port>
|
887 |
+
</output>
|
888 |
+
</layer>
|
889 |
+
<layer id="48" name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" type="ReLU" version="opset1">
|
890 |
+
<input>
|
891 |
+
<port id="0" precision="FP32">
|
892 |
+
<dim>1</dim>
|
893 |
+
<dim>128</dim>
|
894 |
+
<dim>32</dim>
|
895 |
+
<dim>32</dim>
|
896 |
+
</port>
|
897 |
+
</input>
|
898 |
+
<output>
|
899 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0">
|
900 |
+
<dim>1</dim>
|
901 |
+
<dim>128</dim>
|
902 |
+
<dim>32</dim>
|
903 |
+
<dim>32</dim>
|
904 |
+
</port>
|
905 |
+
</output>
|
906 |
+
</layer>
|
907 |
+
<layer id="49" name="onnx::Conv_287" type="Const" version="opset1">
|
908 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="2138112" size="589824" />
|
909 |
+
<output>
|
910 |
+
<port id="0" precision="FP32" names="onnx::Conv_287">
|
911 |
+
<dim>128</dim>
|
912 |
+
<dim>128</dim>
|
913 |
+
<dim>3</dim>
|
914 |
+
<dim>3</dim>
|
915 |
+
</port>
|
916 |
+
</output>
|
917 |
+
</layer>
|
918 |
+
<layer id="50" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
919 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
920 |
+
<input>
|
921 |
+
<port id="0" precision="FP32">
|
922 |
+
<dim>1</dim>
|
923 |
+
<dim>128</dim>
|
924 |
+
<dim>32</dim>
|
925 |
+
<dim>32</dim>
|
926 |
+
</port>
|
927 |
+
<port id="1" precision="FP32">
|
928 |
+
<dim>128</dim>
|
929 |
+
<dim>128</dim>
|
930 |
+
<dim>3</dim>
|
931 |
+
<dim>3</dim>
|
932 |
+
</port>
|
933 |
+
</input>
|
934 |
+
<output>
|
935 |
+
<port id="2" precision="FP32">
|
936 |
+
<dim>1</dim>
|
937 |
+
<dim>128</dim>
|
938 |
+
<dim>32</dim>
|
939 |
+
<dim>32</dim>
|
940 |
+
</port>
|
941 |
+
</output>
|
942 |
+
</layer>
|
943 |
+
<layer id="51" name="Reshape_499" type="Const" version="opset1">
|
944 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2727936" size="512" />
|
945 |
+
<output>
|
946 |
+
<port id="0" precision="FP32">
|
947 |
+
<dim>1</dim>
|
948 |
+
<dim>128</dim>
|
949 |
+
<dim>1</dim>
|
950 |
+
<dim>1</dim>
|
951 |
+
</port>
|
952 |
+
</output>
|
953 |
+
</layer>
|
954 |
+
<layer id="52" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" type="Add" version="opset1">
|
955 |
+
<data auto_broadcast="numpy" />
|
956 |
+
<input>
|
957 |
+
<port id="0" precision="FP32">
|
958 |
+
<dim>1</dim>
|
959 |
+
<dim>128</dim>
|
960 |
+
<dim>32</dim>
|
961 |
+
<dim>32</dim>
|
962 |
+
</port>
|
963 |
+
<port id="1" precision="FP32">
|
964 |
+
<dim>1</dim>
|
965 |
+
<dim>128</dim>
|
966 |
+
<dim>1</dim>
|
967 |
+
<dim>1</dim>
|
968 |
+
</port>
|
969 |
+
</input>
|
970 |
+
<output>
|
971 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0">
|
972 |
+
<dim>1</dim>
|
973 |
+
<dim>128</dim>
|
974 |
+
<dim>32</dim>
|
975 |
+
<dim>32</dim>
|
976 |
+
</port>
|
977 |
+
</output>
|
978 |
+
</layer>
|
979 |
+
<layer id="53" name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" type="Add" version="opset1">
|
980 |
+
<data auto_broadcast="numpy" />
|
981 |
+
<input>
|
982 |
+
<port id="0" precision="FP32">
|
983 |
+
<dim>1</dim>
|
984 |
+
<dim>128</dim>
|
985 |
+
<dim>32</dim>
|
986 |
+
<dim>32</dim>
|
987 |
+
</port>
|
988 |
+
<port id="1" precision="FP32">
|
989 |
+
<dim>1</dim>
|
990 |
+
<dim>128</dim>
|
991 |
+
<dim>32</dim>
|
992 |
+
<dim>32</dim>
|
993 |
+
</port>
|
994 |
+
</input>
|
995 |
+
<output>
|
996 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0">
|
997 |
+
<dim>1</dim>
|
998 |
+
<dim>128</dim>
|
999 |
+
<dim>32</dim>
|
1000 |
+
<dim>32</dim>
|
1001 |
+
</port>
|
1002 |
+
</output>
|
1003 |
+
</layer>
|
1004 |
+
<layer id="54" name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" type="ReLU" version="opset1">
|
1005 |
+
<input>
|
1006 |
+
<port id="0" precision="FP32">
|
1007 |
+
<dim>1</dim>
|
1008 |
+
<dim>128</dim>
|
1009 |
+
<dim>32</dim>
|
1010 |
+
<dim>32</dim>
|
1011 |
+
</port>
|
1012 |
+
</input>
|
1013 |
+
<output>
|
1014 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0">
|
1015 |
+
<dim>1</dim>
|
1016 |
+
<dim>128</dim>
|
1017 |
+
<dim>32</dim>
|
1018 |
+
<dim>32</dim>
|
1019 |
+
</port>
|
1020 |
+
</output>
|
1021 |
+
</layer>
|
1022 |
+
<layer id="55" name="/Shape" type="ShapeOf" version="opset3">
|
1023 |
+
<data output_type="i64" />
|
1024 |
+
<input>
|
1025 |
+
<port id="0" precision="FP32">
|
1026 |
+
<dim>1</dim>
|
1027 |
+
<dim>128</dim>
|
1028 |
+
<dim>32</dim>
|
1029 |
+
<dim>32</dim>
|
1030 |
+
</port>
|
1031 |
+
</input>
|
1032 |
+
<output>
|
1033 |
+
<port id="1" precision="I64" names="/Shape_output_0">
|
1034 |
+
<dim>4</dim>
|
1035 |
+
</port>
|
1036 |
+
</output>
|
1037 |
+
</layer>
|
1038 |
+
<layer id="56" name="/Constant_1" type="Const" version="opset1">
|
1039 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1040 |
+
<output>
|
1041 |
+
<port id="0" precision="I64" names="/Constant_1_output_0">
|
1042 |
+
<dim>1</dim>
|
1043 |
+
</port>
|
1044 |
+
</output>
|
1045 |
+
</layer>
|
1046 |
+
<layer id="57" name="/Constant_2" type="Const" version="opset1">
|
1047 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1048 |
+
<output>
|
1049 |
+
<port id="0" precision="I64" names="/Constant_2_output_0">
|
1050 |
+
<dim>1</dim>
|
1051 |
+
</port>
|
1052 |
+
</output>
|
1053 |
+
</layer>
|
1054 |
+
<layer id="58" name="Broadcast_781" type="Const" version="opset1">
|
1055 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1056 |
+
<output>
|
1057 |
+
<port id="0" precision="I64">
|
1058 |
+
<dim>1</dim>
|
1059 |
+
</port>
|
1060 |
+
</output>
|
1061 |
+
</layer>
|
1062 |
+
<layer id="59" name="/Slice" type="StridedSlice" version="opset1">
|
1063 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1064 |
+
<input>
|
1065 |
+
<port id="0" precision="I64">
|
1066 |
+
<dim>4</dim>
|
1067 |
+
</port>
|
1068 |
+
<port id="1" precision="I64">
|
1069 |
+
<dim>1</dim>
|
1070 |
+
</port>
|
1071 |
+
<port id="2" precision="I64">
|
1072 |
+
<dim>1</dim>
|
1073 |
+
</port>
|
1074 |
+
<port id="3" precision="I64">
|
1075 |
+
<dim>1</dim>
|
1076 |
+
</port>
|
1077 |
+
</input>
|
1078 |
+
<output>
|
1079 |
+
<port id="4" precision="I64" names="/Slice_output_0">
|
1080 |
+
<dim>2</dim>
|
1081 |
+
</port>
|
1082 |
+
</output>
|
1083 |
+
</layer>
|
1084 |
+
<layer id="60" name="/Constant_3" type="Const" version="opset1">
|
1085 |
+
<data element_type="i64" shape="2" offset="2728472" size="16" />
|
1086 |
+
<output>
|
1087 |
+
<port id="0" precision="I64" names="/Constant_3_output_0">
|
1088 |
+
<dim>2</dim>
|
1089 |
+
</port>
|
1090 |
+
</output>
|
1091 |
+
</layer>
|
1092 |
+
<layer id="61" name="/Concat" type="Concat" version="opset1">
|
1093 |
+
<data axis="0" />
|
1094 |
+
<input>
|
1095 |
+
<port id="0" precision="I64">
|
1096 |
+
<dim>2</dim>
|
1097 |
+
</port>
|
1098 |
+
<port id="1" precision="I64">
|
1099 |
+
<dim>2</dim>
|
1100 |
+
</port>
|
1101 |
+
</input>
|
1102 |
+
<output>
|
1103 |
+
<port id="2" precision="I64" names="/Concat_output_0">
|
1104 |
+
<dim>4</dim>
|
1105 |
+
</port>
|
1106 |
+
</output>
|
1107 |
+
</layer>
|
1108 |
+
<layer id="62" name="Convert_804" type="Convert" version="opset1">
|
1109 |
+
<data destination_type="f32" />
|
1110 |
+
<input>
|
1111 |
+
<port id="0" precision="I64">
|
1112 |
+
<dim>4</dim>
|
1113 |
+
</port>
|
1114 |
+
</input>
|
1115 |
+
<output>
|
1116 |
+
<port id="1" precision="FP32">
|
1117 |
+
<dim>4</dim>
|
1118 |
+
</port>
|
1119 |
+
</output>
|
1120 |
+
</layer>
|
1121 |
+
<layer id="63" name="Convert_803" type="Convert" version="opset1">
|
1122 |
+
<data destination_type="f32" />
|
1123 |
+
<input>
|
1124 |
+
<port id="0" precision="I64">
|
1125 |
+
<dim>4</dim>
|
1126 |
+
</port>
|
1127 |
+
</input>
|
1128 |
+
<output>
|
1129 |
+
<port id="1" precision="FP32">
|
1130 |
+
<dim>4</dim>
|
1131 |
+
</port>
|
1132 |
+
</output>
|
1133 |
+
</layer>
|
1134 |
+
<layer id="64" name="Divide_805" type="Divide" version="opset1">
|
1135 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1136 |
+
<input>
|
1137 |
+
<port id="0" precision="FP32">
|
1138 |
+
<dim>4</dim>
|
1139 |
+
</port>
|
1140 |
+
<port id="1" precision="FP32">
|
1141 |
+
<dim>4</dim>
|
1142 |
+
</port>
|
1143 |
+
</input>
|
1144 |
+
<output>
|
1145 |
+
<port id="2" precision="FP32">
|
1146 |
+
<dim>4</dim>
|
1147 |
+
</port>
|
1148 |
+
</output>
|
1149 |
+
</layer>
|
1150 |
+
<layer id="65" name="Constant_6582" type="Const" version="opset1">
|
1151 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1152 |
+
<output>
|
1153 |
+
<port id="0" precision="FP32">
|
1154 |
+
<dim>1</dim>
|
1155 |
+
</port>
|
1156 |
+
</output>
|
1157 |
+
</layer>
|
1158 |
+
<layer id="66" name="Add_807" type="Add" version="opset1">
|
1159 |
+
<data auto_broadcast="numpy" />
|
1160 |
+
<input>
|
1161 |
+
<port id="0" precision="FP32">
|
1162 |
+
<dim>4</dim>
|
1163 |
+
</port>
|
1164 |
+
<port id="1" precision="FP32">
|
1165 |
+
<dim>1</dim>
|
1166 |
+
</port>
|
1167 |
+
</input>
|
1168 |
+
<output>
|
1169 |
+
<port id="2" precision="FP32">
|
1170 |
+
<dim>4</dim>
|
1171 |
+
</port>
|
1172 |
+
</output>
|
1173 |
+
</layer>
|
1174 |
+
<layer id="67" name="/Resize" type="Interpolate" version="opset4">
|
1175 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1176 |
+
<input>
|
1177 |
+
<port id="0" precision="FP32">
|
1178 |
+
<dim>1</dim>
|
1179 |
+
<dim>128</dim>
|
1180 |
+
<dim>32</dim>
|
1181 |
+
<dim>32</dim>
|
1182 |
+
</port>
|
1183 |
+
<port id="1" precision="I64">
|
1184 |
+
<dim>4</dim>
|
1185 |
+
</port>
|
1186 |
+
<port id="2" precision="FP32">
|
1187 |
+
<dim>4</dim>
|
1188 |
+
</port>
|
1189 |
+
</input>
|
1190 |
+
<output>
|
1191 |
+
<port id="3" precision="FP32" names="/Resize_output_0">
|
1192 |
+
<dim>1</dim>
|
1193 |
+
<dim>128</dim>
|
1194 |
+
<dim>64</dim>
|
1195 |
+
<dim>64</dim>
|
1196 |
+
</port>
|
1197 |
+
</output>
|
1198 |
+
</layer>
|
1199 |
+
<layer id="68" name="/Concat_1" type="Concat" version="opset1">
|
1200 |
+
<data axis="1" />
|
1201 |
+
<input>
|
1202 |
+
<port id="0" precision="FP32">
|
1203 |
+
<dim>1</dim>
|
1204 |
+
<dim>64</dim>
|
1205 |
+
<dim>64</dim>
|
1206 |
+
<dim>64</dim>
|
1207 |
+
</port>
|
1208 |
+
<port id="1" precision="FP32">
|
1209 |
+
<dim>1</dim>
|
1210 |
+
<dim>128</dim>
|
1211 |
+
<dim>64</dim>
|
1212 |
+
<dim>64</dim>
|
1213 |
+
</port>
|
1214 |
+
</input>
|
1215 |
+
<output>
|
1216 |
+
<port id="2" precision="FP32" names="/Concat_1_output_0">
|
1217 |
+
<dim>1</dim>
|
1218 |
+
<dim>192</dim>
|
1219 |
+
<dim>64</dim>
|
1220 |
+
<dim>64</dim>
|
1221 |
+
</port>
|
1222 |
+
</output>
|
1223 |
+
</layer>
|
1224 |
+
<layer id="69" name="onnx::Conv_290" type="Const" version="opset1">
|
1225 |
+
<data element_type="f32" shape="256, 128, 3, 3" offset="2728492" size="1179648" />
|
1226 |
+
<output>
|
1227 |
+
<port id="0" precision="FP32" names="onnx::Conv_290">
|
1228 |
+
<dim>256</dim>
|
1229 |
+
<dim>128</dim>
|
1230 |
+
<dim>3</dim>
|
1231 |
+
<dim>3</dim>
|
1232 |
+
</port>
|
1233 |
+
</output>
|
1234 |
+
</layer>
|
1235 |
+
<layer id="70" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1236 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1237 |
+
<input>
|
1238 |
+
<port id="0" precision="FP32">
|
1239 |
+
<dim>1</dim>
|
1240 |
+
<dim>128</dim>
|
1241 |
+
<dim>32</dim>
|
1242 |
+
<dim>32</dim>
|
1243 |
+
</port>
|
1244 |
+
<port id="1" precision="FP32">
|
1245 |
+
<dim>256</dim>
|
1246 |
+
<dim>128</dim>
|
1247 |
+
<dim>3</dim>
|
1248 |
+
<dim>3</dim>
|
1249 |
+
</port>
|
1250 |
+
</input>
|
1251 |
+
<output>
|
1252 |
+
<port id="2" precision="FP32">
|
1253 |
+
<dim>1</dim>
|
1254 |
+
<dim>256</dim>
|
1255 |
+
<dim>16</dim>
|
1256 |
+
<dim>16</dim>
|
1257 |
+
</port>
|
1258 |
+
</output>
|
1259 |
+
</layer>
|
1260 |
+
<layer id="71" name="Reshape_549" type="Const" version="opset1">
|
1261 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="3908140" size="1024" />
|
1262 |
+
<output>
|
1263 |
+
<port id="0" precision="FP32">
|
1264 |
+
<dim>1</dim>
|
1265 |
+
<dim>256</dim>
|
1266 |
+
<dim>1</dim>
|
1267 |
+
<dim>1</dim>
|
1268 |
+
</port>
|
1269 |
+
</output>
|
1270 |
+
</layer>
|
1271 |
+
<layer id="72" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" type="Add" version="opset1">
|
1272 |
+
<data auto_broadcast="numpy" />
|
1273 |
+
<input>
|
1274 |
+
<port id="0" precision="FP32">
|
1275 |
+
<dim>1</dim>
|
1276 |
+
<dim>256</dim>
|
1277 |
+
<dim>16</dim>
|
1278 |
+
<dim>16</dim>
|
1279 |
+
</port>
|
1280 |
+
<port id="1" precision="FP32">
|
1281 |
+
<dim>1</dim>
|
1282 |
+
<dim>256</dim>
|
1283 |
+
<dim>1</dim>
|
1284 |
+
<dim>1</dim>
|
1285 |
+
</port>
|
1286 |
+
</input>
|
1287 |
+
<output>
|
1288 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0">
|
1289 |
+
<dim>1</dim>
|
1290 |
+
<dim>256</dim>
|
1291 |
+
<dim>16</dim>
|
1292 |
+
<dim>16</dim>
|
1293 |
+
</port>
|
1294 |
+
</output>
|
1295 |
+
</layer>
|
1296 |
+
<layer id="73" name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" type="ReLU" version="opset1">
|
1297 |
+
<input>
|
1298 |
+
<port id="0" precision="FP32">
|
1299 |
+
<dim>1</dim>
|
1300 |
+
<dim>256</dim>
|
1301 |
+
<dim>16</dim>
|
1302 |
+
<dim>16</dim>
|
1303 |
+
</port>
|
1304 |
+
</input>
|
1305 |
+
<output>
|
1306 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0">
|
1307 |
+
<dim>1</dim>
|
1308 |
+
<dim>256</dim>
|
1309 |
+
<dim>16</dim>
|
1310 |
+
<dim>16</dim>
|
1311 |
+
</port>
|
1312 |
+
</output>
|
1313 |
+
</layer>
|
1314 |
+
<layer id="74" name="onnx::Conv_293" type="Const" version="opset1">
|
1315 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="3909164" size="2359296" />
|
1316 |
+
<output>
|
1317 |
+
<port id="0" precision="FP32" names="onnx::Conv_293">
|
1318 |
+
<dim>256</dim>
|
1319 |
+
<dim>256</dim>
|
1320 |
+
<dim>3</dim>
|
1321 |
+
<dim>3</dim>
|
1322 |
+
</port>
|
1323 |
+
</output>
|
1324 |
+
</layer>
|
1325 |
+
<layer id="75" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1326 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1327 |
+
<input>
|
1328 |
+
<port id="0" precision="FP32">
|
1329 |
+
<dim>1</dim>
|
1330 |
+
<dim>256</dim>
|
1331 |
+
<dim>16</dim>
|
1332 |
+
<dim>16</dim>
|
1333 |
+
</port>
|
1334 |
+
<port id="1" precision="FP32">
|
1335 |
+
<dim>256</dim>
|
1336 |
+
<dim>256</dim>
|
1337 |
+
<dim>3</dim>
|
1338 |
+
<dim>3</dim>
|
1339 |
+
</port>
|
1340 |
+
</input>
|
1341 |
+
<output>
|
1342 |
+
<port id="2" precision="FP32">
|
1343 |
+
<dim>1</dim>
|
1344 |
+
<dim>256</dim>
|
1345 |
+
<dim>16</dim>
|
1346 |
+
<dim>16</dim>
|
1347 |
+
</port>
|
1348 |
+
</output>
|
1349 |
+
</layer>
|
1350 |
+
<layer id="76" name="Reshape_598" type="Const" version="opset1">
|
1351 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6268460" size="1024" />
|
1352 |
+
<output>
|
1353 |
+
<port id="0" precision="FP32">
|
1354 |
+
<dim>1</dim>
|
1355 |
+
<dim>256</dim>
|
1356 |
+
<dim>1</dim>
|
1357 |
+
<dim>1</dim>
|
1358 |
+
</port>
|
1359 |
+
</output>
|
1360 |
+
</layer>
|
1361 |
+
<layer id="77" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" type="Add" version="opset1">
|
1362 |
+
<data auto_broadcast="numpy" />
|
1363 |
+
<input>
|
1364 |
+
<port id="0" precision="FP32">
|
1365 |
+
<dim>1</dim>
|
1366 |
+
<dim>256</dim>
|
1367 |
+
<dim>16</dim>
|
1368 |
+
<dim>16</dim>
|
1369 |
+
</port>
|
1370 |
+
<port id="1" precision="FP32">
|
1371 |
+
<dim>1</dim>
|
1372 |
+
<dim>256</dim>
|
1373 |
+
<dim>1</dim>
|
1374 |
+
<dim>1</dim>
|
1375 |
+
</port>
|
1376 |
+
</input>
|
1377 |
+
<output>
|
1378 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0">
|
1379 |
+
<dim>1</dim>
|
1380 |
+
<dim>256</dim>
|
1381 |
+
<dim>16</dim>
|
1382 |
+
<dim>16</dim>
|
1383 |
+
</port>
|
1384 |
+
</output>
|
1385 |
+
</layer>
|
1386 |
+
<layer id="78" name="onnx::Conv_296" type="Const" version="opset1">
|
1387 |
+
<data element_type="f32" shape="256, 128, 1, 1" offset="6269484" size="131072" />
|
1388 |
+
<output>
|
1389 |
+
<port id="0" precision="FP32" names="onnx::Conv_296">
|
1390 |
+
<dim>256</dim>
|
1391 |
+
<dim>128</dim>
|
1392 |
+
<dim>1</dim>
|
1393 |
+
<dim>1</dim>
|
1394 |
+
</port>
|
1395 |
+
</output>
|
1396 |
+
</layer>
|
1397 |
+
<layer id="79" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1398 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
1399 |
+
<input>
|
1400 |
+
<port id="0" precision="FP32">
|
1401 |
+
<dim>1</dim>
|
1402 |
+
<dim>128</dim>
|
1403 |
+
<dim>32</dim>
|
1404 |
+
<dim>32</dim>
|
1405 |
+
</port>
|
1406 |
+
<port id="1" precision="FP32">
|
1407 |
+
<dim>256</dim>
|
1408 |
+
<dim>128</dim>
|
1409 |
+
<dim>1</dim>
|
1410 |
+
<dim>1</dim>
|
1411 |
+
</port>
|
1412 |
+
</input>
|
1413 |
+
<output>
|
1414 |
+
<port id="2" precision="FP32">
|
1415 |
+
<dim>1</dim>
|
1416 |
+
<dim>256</dim>
|
1417 |
+
<dim>16</dim>
|
1418 |
+
<dim>16</dim>
|
1419 |
+
</port>
|
1420 |
+
</output>
|
1421 |
+
</layer>
|
1422 |
+
<layer id="80" name="Reshape_646" type="Const" version="opset1">
|
1423 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6400556" size="1024" />
|
1424 |
+
<output>
|
1425 |
+
<port id="0" precision="FP32">
|
1426 |
+
<dim>1</dim>
|
1427 |
+
<dim>256</dim>
|
1428 |
+
<dim>1</dim>
|
1429 |
+
<dim>1</dim>
|
1430 |
+
</port>
|
1431 |
+
</output>
|
1432 |
+
</layer>
|
1433 |
+
<layer id="81" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
1434 |
+
<data auto_broadcast="numpy" />
|
1435 |
+
<input>
|
1436 |
+
<port id="0" precision="FP32">
|
1437 |
+
<dim>1</dim>
|
1438 |
+
<dim>256</dim>
|
1439 |
+
<dim>16</dim>
|
1440 |
+
<dim>16</dim>
|
1441 |
+
</port>
|
1442 |
+
<port id="1" precision="FP32">
|
1443 |
+
<dim>1</dim>
|
1444 |
+
<dim>256</dim>
|
1445 |
+
<dim>1</dim>
|
1446 |
+
<dim>1</dim>
|
1447 |
+
</port>
|
1448 |
+
</input>
|
1449 |
+
<output>
|
1450 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0">
|
1451 |
+
<dim>1</dim>
|
1452 |
+
<dim>256</dim>
|
1453 |
+
<dim>16</dim>
|
1454 |
+
<dim>16</dim>
|
1455 |
+
</port>
|
1456 |
+
</output>
|
1457 |
+
</layer>
|
1458 |
+
<layer id="82" name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" type="Add" version="opset1">
|
1459 |
+
<data auto_broadcast="numpy" />
|
1460 |
+
<input>
|
1461 |
+
<port id="0" precision="FP32">
|
1462 |
+
<dim>1</dim>
|
1463 |
+
<dim>256</dim>
|
1464 |
+
<dim>16</dim>
|
1465 |
+
<dim>16</dim>
|
1466 |
+
</port>
|
1467 |
+
<port id="1" precision="FP32">
|
1468 |
+
<dim>1</dim>
|
1469 |
+
<dim>256</dim>
|
1470 |
+
<dim>16</dim>
|
1471 |
+
<dim>16</dim>
|
1472 |
+
</port>
|
1473 |
+
</input>
|
1474 |
+
<output>
|
1475 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0">
|
1476 |
+
<dim>1</dim>
|
1477 |
+
<dim>256</dim>
|
1478 |
+
<dim>16</dim>
|
1479 |
+
<dim>16</dim>
|
1480 |
+
</port>
|
1481 |
+
</output>
|
1482 |
+
</layer>
|
1483 |
+
<layer id="83" name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" type="ReLU" version="opset1">
|
1484 |
+
<input>
|
1485 |
+
<port id="0" precision="FP32">
|
1486 |
+
<dim>1</dim>
|
1487 |
+
<dim>256</dim>
|
1488 |
+
<dim>16</dim>
|
1489 |
+
<dim>16</dim>
|
1490 |
+
</port>
|
1491 |
+
</input>
|
1492 |
+
<output>
|
1493 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0">
|
1494 |
+
<dim>1</dim>
|
1495 |
+
<dim>256</dim>
|
1496 |
+
<dim>16</dim>
|
1497 |
+
<dim>16</dim>
|
1498 |
+
</port>
|
1499 |
+
</output>
|
1500 |
+
</layer>
|
1501 |
+
<layer id="84" name="onnx::Conv_299" type="Const" version="opset1">
|
1502 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="6401580" size="2359296" />
|
1503 |
+
<output>
|
1504 |
+
<port id="0" precision="FP32" names="onnx::Conv_299">
|
1505 |
+
<dim>256</dim>
|
1506 |
+
<dim>256</dim>
|
1507 |
+
<dim>3</dim>
|
1508 |
+
<dim>3</dim>
|
1509 |
+
</port>
|
1510 |
+
</output>
|
1511 |
+
</layer>
|
1512 |
+
<layer id="85" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1513 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1514 |
+
<input>
|
1515 |
+
<port id="0" precision="FP32">
|
1516 |
+
<dim>1</dim>
|
1517 |
+
<dim>256</dim>
|
1518 |
+
<dim>16</dim>
|
1519 |
+
<dim>16</dim>
|
1520 |
+
</port>
|
1521 |
+
<port id="1" precision="FP32">
|
1522 |
+
<dim>256</dim>
|
1523 |
+
<dim>256</dim>
|
1524 |
+
<dim>3</dim>
|
1525 |
+
<dim>3</dim>
|
1526 |
+
</port>
|
1527 |
+
</input>
|
1528 |
+
<output>
|
1529 |
+
<port id="2" precision="FP32">
|
1530 |
+
<dim>1</dim>
|
1531 |
+
<dim>256</dim>
|
1532 |
+
<dim>16</dim>
|
1533 |
+
<dim>16</dim>
|
1534 |
+
</port>
|
1535 |
+
</output>
|
1536 |
+
</layer>
|
1537 |
+
<layer id="86" name="Reshape_696" type="Const" version="opset1">
|
1538 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="8760876" size="1024" />
|
1539 |
+
<output>
|
1540 |
+
<port id="0" precision="FP32">
|
1541 |
+
<dim>1</dim>
|
1542 |
+
<dim>256</dim>
|
1543 |
+
<dim>1</dim>
|
1544 |
+
<dim>1</dim>
|
1545 |
+
</port>
|
1546 |
+
</output>
|
1547 |
+
</layer>
|
1548 |
+
<layer id="87" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" type="Add" version="opset1">
|
1549 |
+
<data auto_broadcast="numpy" />
|
1550 |
+
<input>
|
1551 |
+
<port id="0" precision="FP32">
|
1552 |
+
<dim>1</dim>
|
1553 |
+
<dim>256</dim>
|
1554 |
+
<dim>16</dim>
|
1555 |
+
<dim>16</dim>
|
1556 |
+
</port>
|
1557 |
+
<port id="1" precision="FP32">
|
1558 |
+
<dim>1</dim>
|
1559 |
+
<dim>256</dim>
|
1560 |
+
<dim>1</dim>
|
1561 |
+
<dim>1</dim>
|
1562 |
+
</port>
|
1563 |
+
</input>
|
1564 |
+
<output>
|
1565 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0">
|
1566 |
+
<dim>1</dim>
|
1567 |
+
<dim>256</dim>
|
1568 |
+
<dim>16</dim>
|
1569 |
+
<dim>16</dim>
|
1570 |
+
</port>
|
1571 |
+
</output>
|
1572 |
+
</layer>
|
1573 |
+
<layer id="88" name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" type="ReLU" version="opset1">
|
1574 |
+
<input>
|
1575 |
+
<port id="0" precision="FP32">
|
1576 |
+
<dim>1</dim>
|
1577 |
+
<dim>256</dim>
|
1578 |
+
<dim>16</dim>
|
1579 |
+
<dim>16</dim>
|
1580 |
+
</port>
|
1581 |
+
</input>
|
1582 |
+
<output>
|
1583 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0">
|
1584 |
+
<dim>1</dim>
|
1585 |
+
<dim>256</dim>
|
1586 |
+
<dim>16</dim>
|
1587 |
+
<dim>16</dim>
|
1588 |
+
</port>
|
1589 |
+
</output>
|
1590 |
+
</layer>
|
1591 |
+
<layer id="89" name="onnx::Conv_302" type="Const" version="opset1">
|
1592 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="8761900" size="2359296" />
|
1593 |
+
<output>
|
1594 |
+
<port id="0" precision="FP32" names="onnx::Conv_302">
|
1595 |
+
<dim>256</dim>
|
1596 |
+
<dim>256</dim>
|
1597 |
+
<dim>3</dim>
|
1598 |
+
<dim>3</dim>
|
1599 |
+
</port>
|
1600 |
+
</output>
|
1601 |
+
</layer>
|
1602 |
+
<layer id="90" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1603 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1604 |
+
<input>
|
1605 |
+
<port id="0" precision="FP32">
|
1606 |
+
<dim>1</dim>
|
1607 |
+
<dim>256</dim>
|
1608 |
+
<dim>16</dim>
|
1609 |
+
<dim>16</dim>
|
1610 |
+
</port>
|
1611 |
+
<port id="1" precision="FP32">
|
1612 |
+
<dim>256</dim>
|
1613 |
+
<dim>256</dim>
|
1614 |
+
<dim>3</dim>
|
1615 |
+
<dim>3</dim>
|
1616 |
+
</port>
|
1617 |
+
</input>
|
1618 |
+
<output>
|
1619 |
+
<port id="2" precision="FP32">
|
1620 |
+
<dim>1</dim>
|
1621 |
+
<dim>256</dim>
|
1622 |
+
<dim>16</dim>
|
1623 |
+
<dim>16</dim>
|
1624 |
+
</port>
|
1625 |
+
</output>
|
1626 |
+
</layer>
|
1627 |
+
<layer id="91" name="Reshape_745" type="Const" version="opset1">
|
1628 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="11121196" size="1024" />
|
1629 |
+
<output>
|
1630 |
+
<port id="0" precision="FP32">
|
1631 |
+
<dim>1</dim>
|
1632 |
+
<dim>256</dim>
|
1633 |
+
<dim>1</dim>
|
1634 |
+
<dim>1</dim>
|
1635 |
+
</port>
|
1636 |
+
</output>
|
1637 |
+
</layer>
|
1638 |
+
<layer id="92" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" type="Add" version="opset1">
|
1639 |
+
<data auto_broadcast="numpy" />
|
1640 |
+
<input>
|
1641 |
+
<port id="0" precision="FP32">
|
1642 |
+
<dim>1</dim>
|
1643 |
+
<dim>256</dim>
|
1644 |
+
<dim>16</dim>
|
1645 |
+
<dim>16</dim>
|
1646 |
+
</port>
|
1647 |
+
<port id="1" precision="FP32">
|
1648 |
+
<dim>1</dim>
|
1649 |
+
<dim>256</dim>
|
1650 |
+
<dim>1</dim>
|
1651 |
+
<dim>1</dim>
|
1652 |
+
</port>
|
1653 |
+
</input>
|
1654 |
+
<output>
|
1655 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0">
|
1656 |
+
<dim>1</dim>
|
1657 |
+
<dim>256</dim>
|
1658 |
+
<dim>16</dim>
|
1659 |
+
<dim>16</dim>
|
1660 |
+
</port>
|
1661 |
+
</output>
|
1662 |
+
</layer>
|
1663 |
+
<layer id="93" name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" type="Add" version="opset1">
|
1664 |
+
<data auto_broadcast="numpy" />
|
1665 |
+
<input>
|
1666 |
+
<port id="0" precision="FP32">
|
1667 |
+
<dim>1</dim>
|
1668 |
+
<dim>256</dim>
|
1669 |
+
<dim>16</dim>
|
1670 |
+
<dim>16</dim>
|
1671 |
+
</port>
|
1672 |
+
<port id="1" precision="FP32">
|
1673 |
+
<dim>1</dim>
|
1674 |
+
<dim>256</dim>
|
1675 |
+
<dim>16</dim>
|
1676 |
+
<dim>16</dim>
|
1677 |
+
</port>
|
1678 |
+
</input>
|
1679 |
+
<output>
|
1680 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0">
|
1681 |
+
<dim>1</dim>
|
1682 |
+
<dim>256</dim>
|
1683 |
+
<dim>16</dim>
|
1684 |
+
<dim>16</dim>
|
1685 |
+
</port>
|
1686 |
+
</output>
|
1687 |
+
</layer>
|
1688 |
+
<layer id="94" name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" type="ReLU" version="opset1">
|
1689 |
+
<input>
|
1690 |
+
<port id="0" precision="FP32">
|
1691 |
+
<dim>1</dim>
|
1692 |
+
<dim>256</dim>
|
1693 |
+
<dim>16</dim>
|
1694 |
+
<dim>16</dim>
|
1695 |
+
</port>
|
1696 |
+
</input>
|
1697 |
+
<output>
|
1698 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0">
|
1699 |
+
<dim>1</dim>
|
1700 |
+
<dim>256</dim>
|
1701 |
+
<dim>16</dim>
|
1702 |
+
<dim>16</dim>
|
1703 |
+
</port>
|
1704 |
+
</output>
|
1705 |
+
</layer>
|
1706 |
+
<layer id="95" name="/Shape_3" type="ShapeOf" version="opset3">
|
1707 |
+
<data output_type="i64" />
|
1708 |
+
<input>
|
1709 |
+
<port id="0" precision="FP32">
|
1710 |
+
<dim>1</dim>
|
1711 |
+
<dim>256</dim>
|
1712 |
+
<dim>16</dim>
|
1713 |
+
<dim>16</dim>
|
1714 |
+
</port>
|
1715 |
+
</input>
|
1716 |
+
<output>
|
1717 |
+
<port id="1" precision="I64" names="/Shape_3_output_0">
|
1718 |
+
<dim>4</dim>
|
1719 |
+
</port>
|
1720 |
+
</output>
|
1721 |
+
</layer>
|
1722 |
+
<layer id="96" name="/Constant_9" type="Const" version="opset1">
|
1723 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1724 |
+
<output>
|
1725 |
+
<port id="0" precision="I64" names="/Constant_9_output_0">
|
1726 |
+
<dim>1</dim>
|
1727 |
+
</port>
|
1728 |
+
</output>
|
1729 |
+
</layer>
|
1730 |
+
<layer id="97" name="/Constant_10" type="Const" version="opset1">
|
1731 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1732 |
+
<output>
|
1733 |
+
<port id="0" precision="I64" names="/Constant_10_output_0">
|
1734 |
+
<dim>1</dim>
|
1735 |
+
</port>
|
1736 |
+
</output>
|
1737 |
+
</layer>
|
1738 |
+
<layer id="98" name="Broadcast_861" type="Const" version="opset1">
|
1739 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1740 |
+
<output>
|
1741 |
+
<port id="0" precision="I64">
|
1742 |
+
<dim>1</dim>
|
1743 |
+
</port>
|
1744 |
+
</output>
|
1745 |
+
</layer>
|
1746 |
+
<layer id="99" name="/Slice_1" type="StridedSlice" version="opset1">
|
1747 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1748 |
+
<input>
|
1749 |
+
<port id="0" precision="I64">
|
1750 |
+
<dim>4</dim>
|
1751 |
+
</port>
|
1752 |
+
<port id="1" precision="I64">
|
1753 |
+
<dim>1</dim>
|
1754 |
+
</port>
|
1755 |
+
<port id="2" precision="I64">
|
1756 |
+
<dim>1</dim>
|
1757 |
+
</port>
|
1758 |
+
<port id="3" precision="I64">
|
1759 |
+
<dim>1</dim>
|
1760 |
+
</port>
|
1761 |
+
</input>
|
1762 |
+
<output>
|
1763 |
+
<port id="4" precision="I64" names="/Slice_1_output_0">
|
1764 |
+
<dim>2</dim>
|
1765 |
+
</port>
|
1766 |
+
</output>
|
1767 |
+
</layer>
|
1768 |
+
<layer id="100" name="/Shape_1" type="ShapeOf" version="opset3">
|
1769 |
+
<data output_type="i64" />
|
1770 |
+
<input>
|
1771 |
+
<port id="0" precision="FP32">
|
1772 |
+
<dim>1</dim>
|
1773 |
+
<dim>192</dim>
|
1774 |
+
<dim>64</dim>
|
1775 |
+
<dim>64</dim>
|
1776 |
+
</port>
|
1777 |
+
</input>
|
1778 |
+
<output>
|
1779 |
+
<port id="1" precision="I64" names="/Shape_1_output_0,/Shape_2_output_0">
|
1780 |
+
<dim>4</dim>
|
1781 |
+
</port>
|
1782 |
+
</output>
|
1783 |
+
</layer>
|
1784 |
+
<layer id="101" name="Constant_6090" type="Const" version="opset1">
|
1785 |
+
<data element_type="i64" shape="2" offset="11122220" size="16" />
|
1786 |
+
<output>
|
1787 |
+
<port id="0" precision="I64">
|
1788 |
+
<dim>2</dim>
|
1789 |
+
</port>
|
1790 |
+
</output>
|
1791 |
+
</layer>
|
1792 |
+
<layer id="102" name="Constant_6091" type="Const" version="opset1">
|
1793 |
+
<data element_type="i64" shape="" offset="2728448" size="8" />
|
1794 |
+
<output>
|
1795 |
+
<port id="0" precision="I64" />
|
1796 |
+
</output>
|
1797 |
+
</layer>
|
1798 |
+
<layer id="103" name="Gather_6092" type="Gather" version="opset8">
|
1799 |
+
<data batch_dims="0" />
|
1800 |
+
<input>
|
1801 |
+
<port id="0" precision="I64">
|
1802 |
+
<dim>4</dim>
|
1803 |
+
</port>
|
1804 |
+
<port id="1" precision="I64">
|
1805 |
+
<dim>2</dim>
|
1806 |
+
</port>
|
1807 |
+
<port id="2" precision="I64" />
|
1808 |
+
</input>
|
1809 |
+
<output>
|
1810 |
+
<port id="3" precision="I64" names="/Cast_output_0,/Concat_2_output_0">
|
1811 |
+
<dim>2</dim>
|
1812 |
+
</port>
|
1813 |
+
</output>
|
1814 |
+
</layer>
|
1815 |
+
<layer id="104" name="/Concat_3" type="Concat" version="opset1">
|
1816 |
+
<data axis="0" />
|
1817 |
+
<input>
|
1818 |
+
<port id="0" precision="I64">
|
1819 |
+
<dim>2</dim>
|
1820 |
+
</port>
|
1821 |
+
<port id="1" precision="I64">
|
1822 |
+
<dim>2</dim>
|
1823 |
+
</port>
|
1824 |
+
</input>
|
1825 |
+
<output>
|
1826 |
+
<port id="2" precision="I64" names="/Concat_3_output_0">
|
1827 |
+
<dim>4</dim>
|
1828 |
+
</port>
|
1829 |
+
</output>
|
1830 |
+
</layer>
|
1831 |
+
<layer id="105" name="Convert_884" type="Convert" version="opset1">
|
1832 |
+
<data destination_type="f32" />
|
1833 |
+
<input>
|
1834 |
+
<port id="0" precision="I64">
|
1835 |
+
<dim>4</dim>
|
1836 |
+
</port>
|
1837 |
+
</input>
|
1838 |
+
<output>
|
1839 |
+
<port id="1" precision="FP32">
|
1840 |
+
<dim>4</dim>
|
1841 |
+
</port>
|
1842 |
+
</output>
|
1843 |
+
</layer>
|
1844 |
+
<layer id="106" name="Convert_883" type="Convert" version="opset1">
|
1845 |
+
<data destination_type="f32" />
|
1846 |
+
<input>
|
1847 |
+
<port id="0" precision="I64">
|
1848 |
+
<dim>4</dim>
|
1849 |
+
</port>
|
1850 |
+
</input>
|
1851 |
+
<output>
|
1852 |
+
<port id="1" precision="FP32">
|
1853 |
+
<dim>4</dim>
|
1854 |
+
</port>
|
1855 |
+
</output>
|
1856 |
+
</layer>
|
1857 |
+
<layer id="107" name="Divide_885" type="Divide" version="opset1">
|
1858 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1859 |
+
<input>
|
1860 |
+
<port id="0" precision="FP32">
|
1861 |
+
<dim>4</dim>
|
1862 |
+
</port>
|
1863 |
+
<port id="1" precision="FP32">
|
1864 |
+
<dim>4</dim>
|
1865 |
+
</port>
|
1866 |
+
</input>
|
1867 |
+
<output>
|
1868 |
+
<port id="2" precision="FP32">
|
1869 |
+
<dim>4</dim>
|
1870 |
+
</port>
|
1871 |
+
</output>
|
1872 |
+
</layer>
|
1873 |
+
<layer id="108" name="Constant_6583" type="Const" version="opset1">
|
1874 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1875 |
+
<output>
|
1876 |
+
<port id="0" precision="FP32">
|
1877 |
+
<dim>1</dim>
|
1878 |
+
</port>
|
1879 |
+
</output>
|
1880 |
+
</layer>
|
1881 |
+
<layer id="109" name="Add_887" type="Add" version="opset1">
|
1882 |
+
<data auto_broadcast="numpy" />
|
1883 |
+
<input>
|
1884 |
+
<port id="0" precision="FP32">
|
1885 |
+
<dim>4</dim>
|
1886 |
+
</port>
|
1887 |
+
<port id="1" precision="FP32">
|
1888 |
+
<dim>1</dim>
|
1889 |
+
</port>
|
1890 |
+
</input>
|
1891 |
+
<output>
|
1892 |
+
<port id="2" precision="FP32">
|
1893 |
+
<dim>4</dim>
|
1894 |
+
</port>
|
1895 |
+
</output>
|
1896 |
+
</layer>
|
1897 |
+
<layer id="110" name="/Resize_1" type="Interpolate" version="opset4">
|
1898 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1899 |
+
<input>
|
1900 |
+
<port id="0" precision="FP32">
|
1901 |
+
<dim>1</dim>
|
1902 |
+
<dim>256</dim>
|
1903 |
+
<dim>16</dim>
|
1904 |
+
<dim>16</dim>
|
1905 |
+
</port>
|
1906 |
+
<port id="1" precision="I64">
|
1907 |
+
<dim>4</dim>
|
1908 |
+
</port>
|
1909 |
+
<port id="2" precision="FP32">
|
1910 |
+
<dim>4</dim>
|
1911 |
+
</port>
|
1912 |
+
</input>
|
1913 |
+
<output>
|
1914 |
+
<port id="3" precision="FP32" names="/Resize_1_output_0">
|
1915 |
+
<dim>1</dim>
|
1916 |
+
<dim>256</dim>
|
1917 |
+
<dim>64</dim>
|
1918 |
+
<dim>64</dim>
|
1919 |
+
</port>
|
1920 |
+
</output>
|
1921 |
+
</layer>
|
1922 |
+
<layer id="111" name="/Concat_4" type="Concat" version="opset1">
|
1923 |
+
<data axis="1" />
|
1924 |
+
<input>
|
1925 |
+
<port id="0" precision="FP32">
|
1926 |
+
<dim>1</dim>
|
1927 |
+
<dim>192</dim>
|
1928 |
+
<dim>64</dim>
|
1929 |
+
<dim>64</dim>
|
1930 |
+
</port>
|
1931 |
+
<port id="1" precision="FP32">
|
1932 |
+
<dim>1</dim>
|
1933 |
+
<dim>256</dim>
|
1934 |
+
<dim>64</dim>
|
1935 |
+
<dim>64</dim>
|
1936 |
+
</port>
|
1937 |
+
</input>
|
1938 |
+
<output>
|
1939 |
+
<port id="2" precision="FP32" names="/Concat_4_output_0">
|
1940 |
+
<dim>1</dim>
|
1941 |
+
<dim>448</dim>
|
1942 |
+
<dim>64</dim>
|
1943 |
+
<dim>64</dim>
|
1944 |
+
</port>
|
1945 |
+
</output>
|
1946 |
+
</layer>
|
1947 |
+
<layer id="112" name="onnx::Gather_308" type="Const" version="opset1">
|
1948 |
+
<data element_type="i64" shape="100" offset="11122236" size="800" />
|
1949 |
+
<output>
|
1950 |
+
<port id="0" precision="I64" names="onnx::Gather_308">
|
1951 |
+
<dim>100</dim>
|
1952 |
+
</port>
|
1953 |
+
</output>
|
1954 |
+
</layer>
|
1955 |
+
<layer id="113" name="Constant_965" type="Const" version="opset1">
|
1956 |
+
<data element_type="i64" shape="" offset="2728464" size="8" />
|
1957 |
+
<output>
|
1958 |
+
<port id="0" precision="I64" />
|
1959 |
+
</output>
|
1960 |
+
</layer>
|
1961 |
+
<layer id="114" name="/Gather_2" type="Gather" version="opset8">
|
1962 |
+
<data batch_dims="0" />
|
1963 |
+
<input>
|
1964 |
+
<port id="0" precision="FP32">
|
1965 |
+
<dim>1</dim>
|
1966 |
+
<dim>448</dim>
|
1967 |
+
<dim>64</dim>
|
1968 |
+
<dim>64</dim>
|
1969 |
+
</port>
|
1970 |
+
<port id="1" precision="I64">
|
1971 |
+
<dim>100</dim>
|
1972 |
+
</port>
|
1973 |
+
<port id="2" precision="I64" />
|
1974 |
+
</input>
|
1975 |
+
<output>
|
1976 |
+
<port id="3" precision="FP32" names="/Gather_2_output_0">
|
1977 |
+
<dim>1</dim>
|
1978 |
+
<dim>100</dim>
|
1979 |
+
<dim>64</dim>
|
1980 |
+
<dim>64</dim>
|
1981 |
+
</port>
|
1982 |
+
</output>
|
1983 |
+
</layer>
|
1984 |
+
<layer id="115" name="/anomaly_map_generator/Constant" type="Const" version="opset1">
|
1985 |
+
<data element_type="i64" shape="3" offset="11123036" size="24" />
|
1986 |
+
<output>
|
1987 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_output_0">
|
1988 |
+
<dim>3</dim>
|
1989 |
+
</port>
|
1990 |
+
</output>
|
1991 |
+
</layer>
|
1992 |
+
<layer id="116" name="/anomaly_map_generator/Reshape" type="Reshape" version="opset1">
|
1993 |
+
<data special_zero="true" />
|
1994 |
+
<input>
|
1995 |
+
<port id="0" precision="FP32">
|
1996 |
+
<dim>1</dim>
|
1997 |
+
<dim>100</dim>
|
1998 |
+
<dim>64</dim>
|
1999 |
+
<dim>64</dim>
|
2000 |
+
</port>
|
2001 |
+
<port id="1" precision="I64">
|
2002 |
+
<dim>3</dim>
|
2003 |
+
</port>
|
2004 |
+
</input>
|
2005 |
+
<output>
|
2006 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_output_0">
|
2007 |
+
<dim>1</dim>
|
2008 |
+
<dim>100</dim>
|
2009 |
+
<dim>4096</dim>
|
2010 |
+
</port>
|
2011 |
+
</output>
|
2012 |
+
</layer>
|
2013 |
+
<layer id="117" name="Constant_6584" type="Const" version="opset1">
|
2014 |
+
<data element_type="f32" shape="1, 100, 4096" offset="11123060" size="1638400" />
|
2015 |
+
<output>
|
2016 |
+
<port id="0" precision="FP32">
|
2017 |
+
<dim>1</dim>
|
2018 |
+
<dim>100</dim>
|
2019 |
+
<dim>4096</dim>
|
2020 |
+
</port>
|
2021 |
+
</output>
|
2022 |
+
</layer>
|
2023 |
+
<layer id="118" name="/anomaly_map_generator/Sub" type="Subtract" version="opset1">
|
2024 |
+
<data auto_broadcast="numpy" />
|
2025 |
+
<input>
|
2026 |
+
<port id="0" precision="FP32">
|
2027 |
+
<dim>1</dim>
|
2028 |
+
<dim>100</dim>
|
2029 |
+
<dim>4096</dim>
|
2030 |
+
</port>
|
2031 |
+
<port id="1" precision="FP32">
|
2032 |
+
<dim>1</dim>
|
2033 |
+
<dim>100</dim>
|
2034 |
+
<dim>4096</dim>
|
2035 |
+
</port>
|
2036 |
+
</input>
|
2037 |
+
<output>
|
2038 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Sub_output_0">
|
2039 |
+
<dim>1</dim>
|
2040 |
+
<dim>100</dim>
|
2041 |
+
<dim>4096</dim>
|
2042 |
+
</port>
|
2043 |
+
</output>
|
2044 |
+
</layer>
|
2045 |
+
<layer id="119" name="Constant_975" type="Const" version="opset1">
|
2046 |
+
<data element_type="i64" shape="3" offset="12761460" size="24" />
|
2047 |
+
<output>
|
2048 |
+
<port id="0" precision="I64">
|
2049 |
+
<dim>3</dim>
|
2050 |
+
</port>
|
2051 |
+
</output>
|
2052 |
+
</layer>
|
2053 |
+
<layer id="120" name="/anomaly_map_generator/Transpose" type="Transpose" version="opset1">
|
2054 |
+
<input>
|
2055 |
+
<port id="0" precision="FP32">
|
2056 |
+
<dim>1</dim>
|
2057 |
+
<dim>100</dim>
|
2058 |
+
<dim>4096</dim>
|
2059 |
+
</port>
|
2060 |
+
<port id="1" precision="I64">
|
2061 |
+
<dim>3</dim>
|
2062 |
+
</port>
|
2063 |
+
</input>
|
2064 |
+
<output>
|
2065 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Transpose_output_0">
|
2066 |
+
<dim>4096</dim>
|
2067 |
+
<dim>1</dim>
|
2068 |
+
<dim>100</dim>
|
2069 |
+
</port>
|
2070 |
+
</output>
|
2071 |
+
</layer>
|
2072 |
+
<layer id="121" name="onnx::MatMul_310" type="Const" version="opset1">
|
2073 |
+
<data element_type="f32" shape="4096, 100, 100" offset="12761484" size="163840000" />
|
2074 |
+
<output>
|
2075 |
+
<port id="0" precision="FP32" names="onnx::MatMul_310">
|
2076 |
+
<dim>4096</dim>
|
2077 |
+
<dim>100</dim>
|
2078 |
+
<dim>100</dim>
|
2079 |
+
</port>
|
2080 |
+
</output>
|
2081 |
+
</layer>
|
2082 |
+
<layer id="122" name="/anomaly_map_generator/MatMul" type="MatMul" version="opset1">
|
2083 |
+
<data transpose_a="false" transpose_b="false" />
|
2084 |
+
<input>
|
2085 |
+
<port id="0" precision="FP32">
|
2086 |
+
<dim>4096</dim>
|
2087 |
+
<dim>1</dim>
|
2088 |
+
<dim>100</dim>
|
2089 |
+
</port>
|
2090 |
+
<port id="1" precision="FP32">
|
2091 |
+
<dim>4096</dim>
|
2092 |
+
<dim>100</dim>
|
2093 |
+
<dim>100</dim>
|
2094 |
+
</port>
|
2095 |
+
</input>
|
2096 |
+
<output>
|
2097 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/MatMul_output_0">
|
2098 |
+
<dim>4096</dim>
|
2099 |
+
<dim>1</dim>
|
2100 |
+
<dim>100</dim>
|
2101 |
+
</port>
|
2102 |
+
</output>
|
2103 |
+
</layer>
|
2104 |
+
<layer id="123" name="/anomaly_map_generator/Mul" type="Multiply" version="opset1">
|
2105 |
+
<data auto_broadcast="numpy" />
|
2106 |
+
<input>
|
2107 |
+
<port id="0" precision="FP32">
|
2108 |
+
<dim>4096</dim>
|
2109 |
+
<dim>1</dim>
|
2110 |
+
<dim>100</dim>
|
2111 |
+
</port>
|
2112 |
+
<port id="1" precision="FP32">
|
2113 |
+
<dim>4096</dim>
|
2114 |
+
<dim>1</dim>
|
2115 |
+
<dim>100</dim>
|
2116 |
+
</port>
|
2117 |
+
</input>
|
2118 |
+
<output>
|
2119 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Mul_output_0">
|
2120 |
+
<dim>4096</dim>
|
2121 |
+
<dim>1</dim>
|
2122 |
+
<dim>100</dim>
|
2123 |
+
</port>
|
2124 |
+
</output>
|
2125 |
+
</layer>
|
2126 |
+
<layer id="124" name="Constant_979" type="Const" version="opset1">
|
2127 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2128 |
+
<output>
|
2129 |
+
<port id="0" precision="I64">
|
2130 |
+
<dim>1</dim>
|
2131 |
+
</port>
|
2132 |
+
</output>
|
2133 |
+
</layer>
|
2134 |
+
<layer id="125" name="/anomaly_map_generator/ReduceSum" type="ReduceSum" version="opset1">
|
2135 |
+
<data keep_dims="false" />
|
2136 |
+
<input>
|
2137 |
+
<port id="0" precision="FP32">
|
2138 |
+
<dim>4096</dim>
|
2139 |
+
<dim>1</dim>
|
2140 |
+
<dim>100</dim>
|
2141 |
+
</port>
|
2142 |
+
<port id="1" precision="I64">
|
2143 |
+
<dim>1</dim>
|
2144 |
+
</port>
|
2145 |
+
</input>
|
2146 |
+
<output>
|
2147 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/ReduceSum_output_0">
|
2148 |
+
<dim>4096</dim>
|
2149 |
+
<dim>1</dim>
|
2150 |
+
</port>
|
2151 |
+
</output>
|
2152 |
+
</layer>
|
2153 |
+
<layer id="126" name="/anomaly_map_generator/Constant_1" type="Const" version="opset1">
|
2154 |
+
<data element_type="i64" shape="4" offset="176601484" size="32" />
|
2155 |
+
<output>
|
2156 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_1_output_0">
|
2157 |
+
<dim>4</dim>
|
2158 |
+
</port>
|
2159 |
+
</output>
|
2160 |
+
</layer>
|
2161 |
+
<layer id="127" name="/anomaly_map_generator/Reshape_1" type="Reshape" version="opset1">
|
2162 |
+
<data special_zero="true" />
|
2163 |
+
<input>
|
2164 |
+
<port id="0" precision="FP32">
|
2165 |
+
<dim>4096</dim>
|
2166 |
+
<dim>1</dim>
|
2167 |
+
</port>
|
2168 |
+
<port id="1" precision="I64">
|
2169 |
+
<dim>4</dim>
|
2170 |
+
</port>
|
2171 |
+
</input>
|
2172 |
+
<output>
|
2173 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_1_output_0">
|
2174 |
+
<dim>1</dim>
|
2175 |
+
<dim>1</dim>
|
2176 |
+
<dim>64</dim>
|
2177 |
+
<dim>64</dim>
|
2178 |
+
</port>
|
2179 |
+
</output>
|
2180 |
+
</layer>
|
2181 |
+
<layer id="128" name="/anomaly_map_generator/Clip" type="Clamp" version="opset1">
|
2182 |
+
<data min="0" max="3.4028234663852886e+38" />
|
2183 |
+
<input>
|
2184 |
+
<port id="0" precision="FP32">
|
2185 |
+
<dim>1</dim>
|
2186 |
+
<dim>1</dim>
|
2187 |
+
<dim>64</dim>
|
2188 |
+
<dim>64</dim>
|
2189 |
+
</port>
|
2190 |
+
</input>
|
2191 |
+
<output>
|
2192 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Clip_output_0">
|
2193 |
+
<dim>1</dim>
|
2194 |
+
<dim>1</dim>
|
2195 |
+
<dim>64</dim>
|
2196 |
+
<dim>64</dim>
|
2197 |
+
</port>
|
2198 |
+
</output>
|
2199 |
+
</layer>
|
2200 |
+
<layer id="129" name="/anomaly_map_generator/Sqrt" type="Sqrt" version="opset1">
|
2201 |
+
<input>
|
2202 |
+
<port id="0" precision="FP32">
|
2203 |
+
<dim>1</dim>
|
2204 |
+
<dim>1</dim>
|
2205 |
+
<dim>64</dim>
|
2206 |
+
<dim>64</dim>
|
2207 |
+
</port>
|
2208 |
+
</input>
|
2209 |
+
<output>
|
2210 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Sqrt_output_0">
|
2211 |
+
<dim>1</dim>
|
2212 |
+
<dim>1</dim>
|
2213 |
+
<dim>64</dim>
|
2214 |
+
<dim>64</dim>
|
2215 |
+
</port>
|
2216 |
+
</output>
|
2217 |
+
</layer>
|
2218 |
+
<layer id="130" name="/anomaly_map_generator/Shape" type="ShapeOf" version="opset3">
|
2219 |
+
<data output_type="i64" />
|
2220 |
+
<input>
|
2221 |
+
<port id="0" precision="FP32">
|
2222 |
+
<dim>1</dim>
|
2223 |
+
<dim>1</dim>
|
2224 |
+
<dim>64</dim>
|
2225 |
+
<dim>64</dim>
|
2226 |
+
</port>
|
2227 |
+
</input>
|
2228 |
+
<output>
|
2229 |
+
<port id="1" precision="I64" names="/anomaly_map_generator/Shape_output_0">
|
2230 |
+
<dim>4</dim>
|
2231 |
+
</port>
|
2232 |
+
</output>
|
2233 |
+
</layer>
|
2234 |
+
<layer id="131" name="/anomaly_map_generator/Constant_4" type="Const" version="opset1">
|
2235 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
2236 |
+
<output>
|
2237 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_4_output_0">
|
2238 |
+
<dim>1</dim>
|
2239 |
+
</port>
|
2240 |
+
</output>
|
2241 |
+
</layer>
|
2242 |
+
<layer id="132" name="/anomaly_map_generator/Constant_5" type="Const" version="opset1">
|
2243 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2244 |
+
<output>
|
2245 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_5_output_0">
|
2246 |
+
<dim>1</dim>
|
2247 |
+
</port>
|
2248 |
+
</output>
|
2249 |
+
</layer>
|
2250 |
+
<layer id="133" name="Broadcast_1002" type="Const" version="opset1">
|
2251 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
2252 |
+
<output>
|
2253 |
+
<port id="0" precision="I64">
|
2254 |
+
<dim>1</dim>
|
2255 |
+
</port>
|
2256 |
+
</output>
|
2257 |
+
</layer>
|
2258 |
+
<layer id="134" name="/anomaly_map_generator/Slice" type="StridedSlice" version="opset1">
|
2259 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
2260 |
+
<input>
|
2261 |
+
<port id="0" precision="I64">
|
2262 |
+
<dim>4</dim>
|
2263 |
+
</port>
|
2264 |
+
<port id="1" precision="I64">
|
2265 |
+
<dim>1</dim>
|
2266 |
+
</port>
|
2267 |
+
<port id="2" precision="I64">
|
2268 |
+
<dim>1</dim>
|
2269 |
+
</port>
|
2270 |
+
<port id="3" precision="I64">
|
2271 |
+
<dim>1</dim>
|
2272 |
+
</port>
|
2273 |
+
</input>
|
2274 |
+
<output>
|
2275 |
+
<port id="4" precision="I64" names="/anomaly_map_generator/Slice_output_0">
|
2276 |
+
<dim>2</dim>
|
2277 |
+
</port>
|
2278 |
+
</output>
|
2279 |
+
</layer>
|
2280 |
+
<layer id="135" name="/anomaly_map_generator/Constant_6" type="Const" version="opset1">
|
2281 |
+
<data element_type="i64" shape="2" offset="176601516" size="16" />
|
2282 |
+
<output>
|
2283 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_6_output_0">
|
2284 |
+
<dim>2</dim>
|
2285 |
+
</port>
|
2286 |
+
</output>
|
2287 |
+
</layer>
|
2288 |
+
<layer id="136" name="/anomaly_map_generator/Concat" type="Concat" version="opset1">
|
2289 |
+
<data axis="0" />
|
2290 |
+
<input>
|
2291 |
+
<port id="0" precision="I64">
|
2292 |
+
<dim>2</dim>
|
2293 |
+
</port>
|
2294 |
+
<port id="1" precision="I64">
|
2295 |
+
<dim>2</dim>
|
2296 |
+
</port>
|
2297 |
+
</input>
|
2298 |
+
<output>
|
2299 |
+
<port id="2" precision="I64" names="/anomaly_map_generator/Concat_output_0">
|
2300 |
+
<dim>4</dim>
|
2301 |
+
</port>
|
2302 |
+
</output>
|
2303 |
+
</layer>
|
2304 |
+
<layer id="137" name="Convert_1025" type="Convert" version="opset1">
|
2305 |
+
<data destination_type="f32" />
|
2306 |
+
<input>
|
2307 |
+
<port id="0" precision="I64">
|
2308 |
+
<dim>4</dim>
|
2309 |
+
</port>
|
2310 |
+
</input>
|
2311 |
+
<output>
|
2312 |
+
<port id="1" precision="FP32">
|
2313 |
+
<dim>4</dim>
|
2314 |
+
</port>
|
2315 |
+
</output>
|
2316 |
+
</layer>
|
2317 |
+
<layer id="138" name="Convert_1024" type="Convert" version="opset1">
|
2318 |
+
<data destination_type="f32" />
|
2319 |
+
<input>
|
2320 |
+
<port id="0" precision="I64">
|
2321 |
+
<dim>4</dim>
|
2322 |
+
</port>
|
2323 |
+
</input>
|
2324 |
+
<output>
|
2325 |
+
<port id="1" precision="FP32">
|
2326 |
+
<dim>4</dim>
|
2327 |
+
</port>
|
2328 |
+
</output>
|
2329 |
+
</layer>
|
2330 |
+
<layer id="139" name="Divide_1026" type="Divide" version="opset1">
|
2331 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
2332 |
+
<input>
|
2333 |
+
<port id="0" precision="FP32">
|
2334 |
+
<dim>4</dim>
|
2335 |
+
</port>
|
2336 |
+
<port id="1" precision="FP32">
|
2337 |
+
<dim>4</dim>
|
2338 |
+
</port>
|
2339 |
+
</input>
|
2340 |
+
<output>
|
2341 |
+
<port id="2" precision="FP32">
|
2342 |
+
<dim>4</dim>
|
2343 |
+
</port>
|
2344 |
+
</output>
|
2345 |
+
</layer>
|
2346 |
+
<layer id="140" name="Constant_6585" type="Const" version="opset1">
|
2347 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
2348 |
+
<output>
|
2349 |
+
<port id="0" precision="FP32">
|
2350 |
+
<dim>1</dim>
|
2351 |
+
</port>
|
2352 |
+
</output>
|
2353 |
+
</layer>
|
2354 |
+
<layer id="141" name="Add_1028" type="Add" version="opset1">
|
2355 |
+
<data auto_broadcast="numpy" />
|
2356 |
+
<input>
|
2357 |
+
<port id="0" precision="FP32">
|
2358 |
+
<dim>4</dim>
|
2359 |
+
</port>
|
2360 |
+
<port id="1" precision="FP32">
|
2361 |
+
<dim>1</dim>
|
2362 |
+
</port>
|
2363 |
+
</input>
|
2364 |
+
<output>
|
2365 |
+
<port id="2" precision="FP32">
|
2366 |
+
<dim>4</dim>
|
2367 |
+
</port>
|
2368 |
+
</output>
|
2369 |
+
</layer>
|
2370 |
+
<layer id="142" name="/anomaly_map_generator/Resize" type="Interpolate" version="opset4">
|
2371 |
+
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
2372 |
+
<input>
|
2373 |
+
<port id="0" precision="FP32">
|
2374 |
+
<dim>1</dim>
|
2375 |
+
<dim>1</dim>
|
2376 |
+
<dim>64</dim>
|
2377 |
+
<dim>64</dim>
|
2378 |
+
</port>
|
2379 |
+
<port id="1" precision="I64">
|
2380 |
+
<dim>4</dim>
|
2381 |
+
</port>
|
2382 |
+
<port id="2" precision="FP32">
|
2383 |
+
<dim>4</dim>
|
2384 |
+
</port>
|
2385 |
+
</input>
|
2386 |
+
<output>
|
2387 |
+
<port id="3" precision="FP32" names="/anomaly_map_generator/Resize_output_0">
|
2388 |
+
<dim>1</dim>
|
2389 |
+
<dim>1</dim>
|
2390 |
+
<dim>256</dim>
|
2391 |
+
<dim>256</dim>
|
2392 |
+
</port>
|
2393 |
+
</output>
|
2394 |
+
</layer>
|
2395 |
+
<layer id="143" name="Split_1097.0" type="Const" version="opset1">
|
2396 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2397 |
+
<output>
|
2398 |
+
<port id="0" precision="I64">
|
2399 |
+
<dim>4</dim>
|
2400 |
+
</port>
|
2401 |
+
</output>
|
2402 |
+
</layer>
|
2403 |
+
<layer id="144" name="Split_1097.1" type="Const" version="opset1">
|
2404 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2405 |
+
<output>
|
2406 |
+
<port id="0" precision="I64">
|
2407 |
+
<dim>4</dim>
|
2408 |
+
</port>
|
2409 |
+
</output>
|
2410 |
+
</layer>
|
2411 |
+
<layer id="145" name="Constant_1095" type="Const" version="opset1">
|
2412 |
+
<data element_type="f32" shape="" offset="176601564" size="4" />
|
2413 |
+
<output>
|
2414 |
+
<port id="0" precision="FP32" />
|
2415 |
+
</output>
|
2416 |
+
</layer>
|
2417 |
+
<layer id="146" name="/anomaly_map_generator/blur/Pad" type="Pad" version="opset1">
|
2418 |
+
<data pad_mode="reflect" />
|
2419 |
+
<input>
|
2420 |
+
<port id="0" precision="FP32">
|
2421 |
+
<dim>1</dim>
|
2422 |
+
<dim>1</dim>
|
2423 |
+
<dim>256</dim>
|
2424 |
+
<dim>256</dim>
|
2425 |
+
</port>
|
2426 |
+
<port id="1" precision="I64">
|
2427 |
+
<dim>4</dim>
|
2428 |
+
</port>
|
2429 |
+
<port id="2" precision="I64">
|
2430 |
+
<dim>4</dim>
|
2431 |
+
</port>
|
2432 |
+
<port id="3" precision="FP32" />
|
2433 |
+
</input>
|
2434 |
+
<output>
|
2435 |
+
<port id="4" precision="FP32" names="/anomaly_map_generator/blur/Pad_output_0">
|
2436 |
+
<dim>1</dim>
|
2437 |
+
<dim>1</dim>
|
2438 |
+
<dim>288</dim>
|
2439 |
+
<dim>288</dim>
|
2440 |
+
</port>
|
2441 |
+
</output>
|
2442 |
+
</layer>
|
2443 |
+
<layer id="147" name="anomaly_map_generator.blur.kernel" type="Const" version="opset1">
|
2444 |
+
<data element_type="f32" shape="1, 1, 33, 33" offset="176601568" size="4356" />
|
2445 |
+
<output>
|
2446 |
+
<port id="0" precision="FP32" names="anomaly_map_generator.blur.kernel">
|
2447 |
+
<dim>1</dim>
|
2448 |
+
<dim>1</dim>
|
2449 |
+
<dim>33</dim>
|
2450 |
+
<dim>33</dim>
|
2451 |
+
</port>
|
2452 |
+
</output>
|
2453 |
+
</layer>
|
2454 |
+
<layer id="148" name="/anomaly_map_generator/blur/Conv" type="Convolution" version="opset1">
|
2455 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
2456 |
+
<input>
|
2457 |
+
<port id="0" precision="FP32">
|
2458 |
+
<dim>1</dim>
|
2459 |
+
<dim>1</dim>
|
2460 |
+
<dim>288</dim>
|
2461 |
+
<dim>288</dim>
|
2462 |
+
</port>
|
2463 |
+
<port id="1" precision="FP32">
|
2464 |
+
<dim>1</dim>
|
2465 |
+
<dim>1</dim>
|
2466 |
+
<dim>33</dim>
|
2467 |
+
<dim>33</dim>
|
2468 |
+
</port>
|
2469 |
+
</input>
|
2470 |
+
<output>
|
2471 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/blur/Conv_output_0">
|
2472 |
+
<dim>1</dim>
|
2473 |
+
<dim>1</dim>
|
2474 |
+
<dim>256</dim>
|
2475 |
+
<dim>256</dim>
|
2476 |
+
</port>
|
2477 |
+
</output>
|
2478 |
+
</layer>
|
2479 |
+
<layer id="149" name="/anomaly_map_generator/blur/Constant_8" type="Const" version="opset1">
|
2480 |
+
<data element_type="i64" shape="4" offset="176605924" size="32" />
|
2481 |
+
<output>
|
2482 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/blur/Constant_8_output_0">
|
2483 |
+
<dim>4</dim>
|
2484 |
+
</port>
|
2485 |
+
</output>
|
2486 |
+
</layer>
|
2487 |
+
<layer id="150" name="output" type="Reshape" version="opset1">
|
2488 |
+
<data special_zero="true" />
|
2489 |
+
<input>
|
2490 |
+
<port id="0" precision="FP32">
|
2491 |
+
<dim>1</dim>
|
2492 |
+
<dim>1</dim>
|
2493 |
+
<dim>256</dim>
|
2494 |
+
<dim>256</dim>
|
2495 |
+
</port>
|
2496 |
+
<port id="1" precision="I64">
|
2497 |
+
<dim>4</dim>
|
2498 |
+
</port>
|
2499 |
+
</input>
|
2500 |
+
<output>
|
2501 |
+
<port id="2" precision="FP32" names="output">
|
2502 |
+
<dim>1</dim>
|
2503 |
+
<dim>1</dim>
|
2504 |
+
<dim>256</dim>
|
2505 |
+
<dim>256</dim>
|
2506 |
+
</port>
|
2507 |
+
</output>
|
2508 |
+
</layer>
|
2509 |
+
<layer id="151" name="output/sink_port_0" type="Result" version="opset1">
|
2510 |
+
<input>
|
2511 |
+
<port id="0" precision="FP32">
|
2512 |
+
<dim>1</dim>
|
2513 |
+
<dim>1</dim>
|
2514 |
+
<dim>256</dim>
|
2515 |
+
<dim>256</dim>
|
2516 |
+
</port>
|
2517 |
+
</input>
|
2518 |
+
</layer>
|
2519 |
+
</layers>
|
2520 |
+
<edges>
|
2521 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
2522 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
|
2523 |
+
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
|
2524 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
|
2525 |
+
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
|
2526 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
|
2527 |
+
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
|
2528 |
+
<edge from-layer="6" from-port="1" to-layer="16" to-port="1" />
|
2529 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
|
2530 |
+
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
|
2531 |
+
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
|
2532 |
+
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
|
2533 |
+
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
|
2534 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
|
2535 |
+
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
|
2536 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
|
2537 |
+
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
|
2538 |
+
<edge from-layer="16" from-port="2" to-layer="17" to-port="0" />
|
2539 |
+
<edge from-layer="17" from-port="1" to-layer="19" to-port="0" />
|
2540 |
+
<edge from-layer="17" from-port="1" to-layer="27" to-port="1" />
|
2541 |
+
<edge from-layer="18" from-port="0" to-layer="19" to-port="1" />
|
2542 |
+
<edge from-layer="19" from-port="2" to-layer="21" to-port="0" />
|
2543 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="1" />
|
2544 |
+
<edge from-layer="21" from-port="2" to-layer="22" to-port="0" />
|
2545 |
+
<edge from-layer="22" from-port="1" to-layer="24" to-port="0" />
|
2546 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
|
2547 |
+
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
|
2548 |
+
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
|
2549 |
+
<edge from-layer="26" from-port="2" to-layer="27" to-port="0" />
|
2550 |
+
<edge from-layer="27" from-port="2" to-layer="28" to-port="0" />
|
2551 |
+
<edge from-layer="28" from-port="1" to-layer="30" to-port="0" />
|
2552 |
+
<edge from-layer="28" from-port="1" to-layer="39" to-port="0" />
|
2553 |
+
<edge from-layer="28" from-port="1" to-layer="68" to-port="0" />
|
2554 |
+
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
|
2555 |
+
<edge from-layer="30" from-port="2" to-layer="32" to-port="0" />
|
2556 |
+
<edge from-layer="31" from-port="0" to-layer="32" to-port="1" />
|
2557 |
+
<edge from-layer="32" from-port="2" to-layer="33" to-port="0" />
|
2558 |
+
<edge from-layer="33" from-port="1" to-layer="35" to-port="0" />
|
2559 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
2560 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
2561 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
|
2562 |
+
<edge from-layer="37" from-port="2" to-layer="42" to-port="0" />
|
2563 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
2564 |
+
<edge from-layer="39" from-port="2" to-layer="41" to-port="0" />
|
2565 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="1" />
|
2566 |
+
<edge from-layer="41" from-port="2" to-layer="42" to-port="1" />
|
2567 |
+
<edge from-layer="42" from-port="2" to-layer="43" to-port="0" />
|
2568 |
+
<edge from-layer="43" from-port="1" to-layer="45" to-port="0" />
|
2569 |
+
<edge from-layer="43" from-port="1" to-layer="53" to-port="1" />
|
2570 |
+
<edge from-layer="44" from-port="0" to-layer="45" to-port="1" />
|
2571 |
+
<edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
|
2572 |
+
<edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
|
2573 |
+
<edge from-layer="47" from-port="2" to-layer="48" to-port="0" />
|
2574 |
+
<edge from-layer="48" from-port="1" to-layer="50" to-port="0" />
|
2575 |
+
<edge from-layer="49" from-port="0" to-layer="50" to-port="1" />
|
2576 |
+
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
|
2577 |
+
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
|
2578 |
+
<edge from-layer="52" from-port="2" to-layer="53" to-port="0" />
|
2579 |
+
<edge from-layer="53" from-port="2" to-layer="54" to-port="0" />
|
2580 |
+
<edge from-layer="54" from-port="1" to-layer="55" to-port="0" />
|
2581 |
+
<edge from-layer="54" from-port="1" to-layer="67" to-port="0" />
|
2582 |
+
<edge from-layer="54" from-port="1" to-layer="79" to-port="0" />
|
2583 |
+
<edge from-layer="54" from-port="1" to-layer="70" to-port="0" />
|
2584 |
+
<edge from-layer="55" from-port="1" to-layer="59" to-port="0" />
|
2585 |
+
<edge from-layer="55" from-port="1" to-layer="63" to-port="0" />
|
2586 |
+
<edge from-layer="56" from-port="0" to-layer="59" to-port="1" />
|
2587 |
+
<edge from-layer="57" from-port="0" to-layer="59" to-port="2" />
|
2588 |
+
<edge from-layer="58" from-port="0" to-layer="59" to-port="3" />
|
2589 |
+
<edge from-layer="59" from-port="4" to-layer="61" to-port="0" />
|
2590 |
+
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
|
2591 |
+
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
|
2592 |
+
<edge from-layer="61" from-port="2" to-layer="67" to-port="1" />
|
2593 |
+
<edge from-layer="62" from-port="1" to-layer="64" to-port="0" />
|
2594 |
+
<edge from-layer="63" from-port="1" to-layer="64" to-port="1" />
|
2595 |
+
<edge from-layer="64" from-port="2" to-layer="66" to-port="0" />
|
2596 |
+
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
|
2597 |
+
<edge from-layer="66" from-port="2" to-layer="67" to-port="2" />
|
2598 |
+
<edge from-layer="67" from-port="3" to-layer="68" to-port="1" />
|
2599 |
+
<edge from-layer="68" from-port="2" to-layer="111" to-port="0" />
|
2600 |
+
<edge from-layer="68" from-port="2" to-layer="100" to-port="0" />
|
2601 |
+
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
|
2602 |
+
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
|
2603 |
+
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
|
2604 |
+
<edge from-layer="72" from-port="2" to-layer="73" to-port="0" />
|
2605 |
+
<edge from-layer="73" from-port="1" to-layer="75" to-port="0" />
|
2606 |
+
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
|
2607 |
+
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
|
2608 |
+
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
|
2609 |
+
<edge from-layer="77" from-port="2" to-layer="82" to-port="0" />
|
2610 |
+
<edge from-layer="78" from-port="0" to-layer="79" to-port="1" />
|
2611 |
+
<edge from-layer="79" from-port="2" to-layer="81" to-port="0" />
|
2612 |
+
<edge from-layer="80" from-port="0" to-layer="81" to-port="1" />
|
2613 |
+
<edge from-layer="81" from-port="2" to-layer="82" to-port="1" />
|
2614 |
+
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
|
2615 |
+
<edge from-layer="83" from-port="1" to-layer="85" to-port="0" />
|
2616 |
+
<edge from-layer="83" from-port="1" to-layer="93" to-port="1" />
|
2617 |
+
<edge from-layer="84" from-port="0" to-layer="85" to-port="1" />
|
2618 |
+
<edge from-layer="85" from-port="2" to-layer="87" to-port="0" />
|
2619 |
+
<edge from-layer="86" from-port="0" to-layer="87" to-port="1" />
|
2620 |
+
<edge from-layer="87" from-port="2" to-layer="88" to-port="0" />
|
2621 |
+
<edge from-layer="88" from-port="1" to-layer="90" to-port="0" />
|
2622 |
+
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
|
2623 |
+
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
|
2624 |
+
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
|
2625 |
+
<edge from-layer="92" from-port="2" to-layer="93" to-port="0" />
|
2626 |
+
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
|
2627 |
+
<edge from-layer="94" from-port="1" to-layer="95" to-port="0" />
|
2628 |
+
<edge from-layer="94" from-port="1" to-layer="110" to-port="0" />
|
2629 |
+
<edge from-layer="95" from-port="1" to-layer="99" to-port="0" />
|
2630 |
+
<edge from-layer="95" from-port="1" to-layer="106" to-port="0" />
|
2631 |
+
<edge from-layer="96" from-port="0" to-layer="99" to-port="1" />
|
2632 |
+
<edge from-layer="97" from-port="0" to-layer="99" to-port="2" />
|
2633 |
+
<edge from-layer="98" from-port="0" to-layer="99" to-port="3" />
|
2634 |
+
<edge from-layer="99" from-port="4" to-layer="104" to-port="0" />
|
2635 |
+
<edge from-layer="100" from-port="1" to-layer="103" to-port="0" />
|
2636 |
+
<edge from-layer="101" from-port="0" to-layer="103" to-port="1" />
|
2637 |
+
<edge from-layer="102" from-port="0" to-layer="103" to-port="2" />
|
2638 |
+
<edge from-layer="103" from-port="3" to-layer="104" to-port="1" />
|
2639 |
+
<edge from-layer="104" from-port="2" to-layer="105" to-port="0" />
|
2640 |
+
<edge from-layer="104" from-port="2" to-layer="110" to-port="1" />
|
2641 |
+
<edge from-layer="105" from-port="1" to-layer="107" to-port="0" />
|
2642 |
+
<edge from-layer="106" from-port="1" to-layer="107" to-port="1" />
|
2643 |
+
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
|
2644 |
+
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
|
2645 |
+
<edge from-layer="109" from-port="2" to-layer="110" to-port="2" />
|
2646 |
+
<edge from-layer="110" from-port="3" to-layer="111" to-port="1" />
|
2647 |
+
<edge from-layer="111" from-port="2" to-layer="114" to-port="0" />
|
2648 |
+
<edge from-layer="112" from-port="0" to-layer="114" to-port="1" />
|
2649 |
+
<edge from-layer="113" from-port="0" to-layer="114" to-port="2" />
|
2650 |
+
<edge from-layer="114" from-port="3" to-layer="116" to-port="0" />
|
2651 |
+
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
|
2652 |
+
<edge from-layer="116" from-port="2" to-layer="118" to-port="0" />
|
2653 |
+
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
|
2654 |
+
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
|
2655 |
+
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
|
2656 |
+
<edge from-layer="120" from-port="2" to-layer="122" to-port="0" />
|
2657 |
+
<edge from-layer="120" from-port="2" to-layer="123" to-port="1" />
|
2658 |
+
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
|
2659 |
+
<edge from-layer="122" from-port="2" to-layer="123" to-port="0" />
|
2660 |
+
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
|
2661 |
+
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
|
2662 |
+
<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
|
2663 |
+
<edge from-layer="126" from-port="0" to-layer="127" to-port="1" />
|
2664 |
+
<edge from-layer="127" from-port="2" to-layer="128" to-port="0" />
|
2665 |
+
<edge from-layer="128" from-port="1" to-layer="129" to-port="0" />
|
2666 |
+
<edge from-layer="129" from-port="1" to-layer="130" to-port="0" />
|
2667 |
+
<edge from-layer="129" from-port="1" to-layer="142" to-port="0" />
|
2668 |
+
<edge from-layer="130" from-port="1" to-layer="134" to-port="0" />
|
2669 |
+
<edge from-layer="130" from-port="1" to-layer="138" to-port="0" />
|
2670 |
+
<edge from-layer="131" from-port="0" to-layer="134" to-port="1" />
|
2671 |
+
<edge from-layer="132" from-port="0" to-layer="134" to-port="2" />
|
2672 |
+
<edge from-layer="133" from-port="0" to-layer="134" to-port="3" />
|
2673 |
+
<edge from-layer="134" from-port="4" to-layer="136" to-port="0" />
|
2674 |
+
<edge from-layer="135" from-port="0" to-layer="136" to-port="1" />
|
2675 |
+
<edge from-layer="136" from-port="2" to-layer="137" to-port="0" />
|
2676 |
+
<edge from-layer="136" from-port="2" to-layer="142" to-port="1" />
|
2677 |
+
<edge from-layer="137" from-port="1" to-layer="139" to-port="0" />
|
2678 |
+
<edge from-layer="138" from-port="1" to-layer="139" to-port="1" />
|
2679 |
+
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
|
2680 |
+
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
|
2681 |
+
<edge from-layer="141" from-port="2" to-layer="142" to-port="2" />
|
2682 |
+
<edge from-layer="142" from-port="3" to-layer="146" to-port="0" />
|
2683 |
+
<edge from-layer="143" from-port="0" to-layer="146" to-port="1" />
|
2684 |
+
<edge from-layer="144" from-port="0" to-layer="146" to-port="2" />
|
2685 |
+
<edge from-layer="145" from-port="0" to-layer="146" to-port="3" />
|
2686 |
+
<edge from-layer="146" from-port="4" to-layer="148" to-port="0" />
|
2687 |
+
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
|
2688 |
+
<edge from-layer="148" from-port="2" to-layer="150" to-port="0" />
|
2689 |
+
<edge from-layer="149" from-port="0" to-layer="150" to-port="1" />
|
2690 |
+
<edge from-layer="150" from-port="2" to-layer="151" to-port="0" />
|
2691 |
+
</edges>
|
2692 |
+
<rt_info>
|
2693 |
+
<MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2694 |
+
<Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2695 |
+
<conversion_parameters>
|
2696 |
+
<framework value="onnx" />
|
2697 |
+
<input_model value="DIR\model.onnx" />
|
2698 |
+
<model_name value="model" />
|
2699 |
+
<output_dir value="DIR" />
|
2700 |
+
</conversion_parameters>
|
2701 |
+
<legacy_frontend value="False" />
|
2702 |
+
</rt_info>
|
2703 |
+
</net>
|
grid/examples/001.png
ADDED
grid/examples/005.png
ADDED
grid/examples/006.png
ADDED
grid/examples/007.png
ADDED
grid/examples/009.png
ADDED
grid/examples/010.png
ADDED
grid/run/weights/lightning/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3d201e840f685a2d077284582466865bb9caca2183207ab4e00d2e584a28802
|
3 |
+
size 189222268
|
grid/run/weights/openvino/metadata.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task": "segmentation",
|
3 |
+
"transform": {
|
4 |
+
"__version__": "1.3.0",
|
5 |
+
"transform": {
|
6 |
+
"__class_fullname__": "Compose",
|
7 |
+
"p": 1.0,
|
8 |
+
"transforms": [
|
9 |
+
{
|
10 |
+
"__class_fullname__": "Resize",
|
11 |
+
"always_apply": true,
|
12 |
+
"p": 1,
|
13 |
+
"height": 256,
|
14 |
+
"width": 256,
|
15 |
+
"interpolation": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"__class_fullname__": "Normalize",
|
19 |
+
"always_apply": false,
|
20 |
+
"p": 1.0,
|
21 |
+
"mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"std": [
|
27 |
+
0.229,
|
28 |
+
0.224,
|
29 |
+
0.225
|
30 |
+
],
|
31 |
+
"max_pixel_value": 255.0
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"__class_fullname__": "ToTensorV2",
|
35 |
+
"always_apply": true,
|
36 |
+
"p": 1.0,
|
37 |
+
"transpose_mask": false
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"bbox_params": null,
|
41 |
+
"keypoint_params": null,
|
42 |
+
"additional_targets": {
|
43 |
+
"image": "image",
|
44 |
+
"depth_image": "image"
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"image_threshold": 9.912899017333984,
|
49 |
+
"pixel_threshold": 9.94576358795166,
|
50 |
+
"min": 5.021185874938965,
|
51 |
+
"max": 17.323503494262695
|
52 |
+
}
|
grid/run/weights/openvino/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04946b5123f6ead62260ec2fdd8396e3f4feba09a5d9e54aec2de5be1ad8c781
|
3 |
+
size 176605956
|
grid/run/weights/openvino/model.mapping
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<mapping>
|
3 |
+
<map>
|
4 |
+
<framework name="input" output_port_id="input" />
|
5 |
+
<IR name="input" output_port_id="0" />
|
6 |
+
</map>
|
7 |
+
<map>
|
8 |
+
<framework name="onnx::Conv_260" output_port_id="onnx::Conv_260" />
|
9 |
+
<IR name="onnx::Conv_260" output_port_id="0" />
|
10 |
+
</map>
|
11 |
+
<map>
|
12 |
+
<framework name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/conv1/Conv_output_0" />
|
13 |
+
<IR name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="2" />
|
14 |
+
</map>
|
15 |
+
<map>
|
16 |
+
<framework name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="/feature_extractor/feature_extractor/act1/Relu_output_0" />
|
17 |
+
<IR name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="1" />
|
18 |
+
</map>
|
19 |
+
<map>
|
20 |
+
<framework name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0" />
|
21 |
+
<IR name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="1" />
|
22 |
+
</map>
|
23 |
+
<map>
|
24 |
+
<framework name="onnx::Conv_263" output_port_id="onnx::Conv_263" />
|
25 |
+
<IR name="onnx::Conv_263" output_port_id="0" />
|
26 |
+
</map>
|
27 |
+
<map>
|
28 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0" />
|
29 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="2" />
|
30 |
+
</map>
|
31 |
+
<map>
|
32 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0" />
|
33 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="1" />
|
34 |
+
</map>
|
35 |
+
<map>
|
36 |
+
<framework name="onnx::Conv_266" output_port_id="onnx::Conv_266" />
|
37 |
+
<IR name="onnx::Conv_266" output_port_id="0" />
|
38 |
+
</map>
|
39 |
+
<map>
|
40 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0" />
|
41 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="2" />
|
42 |
+
</map>
|
43 |
+
<map>
|
44 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0" />
|
45 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="2" />
|
46 |
+
</map>
|
47 |
+
<map>
|
48 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0" />
|
49 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="1" />
|
50 |
+
</map>
|
51 |
+
<map>
|
52 |
+
<framework name="onnx::Conv_269" output_port_id="onnx::Conv_269" />
|
53 |
+
<IR name="onnx::Conv_269" output_port_id="0" />
|
54 |
+
</map>
|
55 |
+
<map>
|
56 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0" />
|
57 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="2" />
|
58 |
+
</map>
|
59 |
+
<map>
|
60 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0" />
|
61 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="1" />
|
62 |
+
</map>
|
63 |
+
<map>
|
64 |
+
<framework name="onnx::Conv_272" output_port_id="onnx::Conv_272" />
|
65 |
+
<IR name="onnx::Conv_272" output_port_id="0" />
|
66 |
+
</map>
|
67 |
+
<map>
|
68 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0" />
|
69 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="2" />
|
70 |
+
</map>
|
71 |
+
<map>
|
72 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0" />
|
73 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="2" />
|
74 |
+
</map>
|
75 |
+
<map>
|
76 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0" />
|
77 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="1" />
|
78 |
+
</map>
|
79 |
+
<map>
|
80 |
+
<framework name="onnx::Conv_275" output_port_id="onnx::Conv_275" />
|
81 |
+
<IR name="onnx::Conv_275" output_port_id="0" />
|
82 |
+
</map>
|
83 |
+
<map>
|
84 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0" />
|
85 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="2" />
|
86 |
+
</map>
|
87 |
+
<map>
|
88 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0" />
|
89 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="1" />
|
90 |
+
</map>
|
91 |
+
<map>
|
92 |
+
<framework name="onnx::Conv_278" output_port_id="onnx::Conv_278" />
|
93 |
+
<IR name="onnx::Conv_278" output_port_id="0" />
|
94 |
+
</map>
|
95 |
+
<map>
|
96 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0" />
|
97 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="2" />
|
98 |
+
</map>
|
99 |
+
<map>
|
100 |
+
<framework name="onnx::Conv_281" output_port_id="onnx::Conv_281" />
|
101 |
+
<IR name="onnx::Conv_281" output_port_id="0" />
|
102 |
+
</map>
|
103 |
+
<map>
|
104 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0" />
|
105 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="2" />
|
106 |
+
</map>
|
107 |
+
<map>
|
108 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0" />
|
109 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="2" />
|
110 |
+
</map>
|
111 |
+
<map>
|
112 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0" />
|
113 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="1" />
|
114 |
+
</map>
|
115 |
+
<map>
|
116 |
+
<framework name="onnx::Conv_284" output_port_id="onnx::Conv_284" />
|
117 |
+
<IR name="onnx::Conv_284" output_port_id="0" />
|
118 |
+
</map>
|
119 |
+
<map>
|
120 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0" />
|
121 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="2" />
|
122 |
+
</map>
|
123 |
+
<map>
|
124 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0" />
|
125 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="1" />
|
126 |
+
</map>
|
127 |
+
<map>
|
128 |
+
<framework name="onnx::Conv_287" output_port_id="onnx::Conv_287" />
|
129 |
+
<IR name="onnx::Conv_287" output_port_id="0" />
|
130 |
+
</map>
|
131 |
+
<map>
|
132 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0" />
|
133 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="2" />
|
134 |
+
</map>
|
135 |
+
<map>
|
136 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0" />
|
137 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="2" />
|
138 |
+
</map>
|
139 |
+
<map>
|
140 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0" />
|
141 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="1" />
|
142 |
+
</map>
|
143 |
+
<map>
|
144 |
+
<framework name="/Shape" output_port_id="/Shape_output_0" />
|
145 |
+
<IR name="/Shape" output_port_id="1" />
|
146 |
+
</map>
|
147 |
+
<map>
|
148 |
+
<framework name="/Constant_1" output_port_id="/Constant_1_output_0" />
|
149 |
+
<IR name="/Constant_1" output_port_id="0" />
|
150 |
+
</map>
|
151 |
+
<map>
|
152 |
+
<framework name="/Constant_2" output_port_id="/Constant_2_output_0" />
|
153 |
+
<IR name="/Constant_2" output_port_id="0" />
|
154 |
+
</map>
|
155 |
+
<map>
|
156 |
+
<framework name="/Slice" output_port_id="/Slice_output_0" />
|
157 |
+
<IR name="/Slice" output_port_id="4" />
|
158 |
+
</map>
|
159 |
+
<map>
|
160 |
+
<framework name="/Constant_3" output_port_id="/Constant_3_output_0" />
|
161 |
+
<IR name="/Constant_3" output_port_id="0" />
|
162 |
+
</map>
|
163 |
+
<map>
|
164 |
+
<framework name="/Concat" output_port_id="/Concat_output_0" />
|
165 |
+
<IR name="/Concat" output_port_id="2" />
|
166 |
+
</map>
|
167 |
+
<map>
|
168 |
+
<framework name="/Resize" output_port_id="/Resize_output_0" />
|
169 |
+
<IR name="/Resize" output_port_id="3" />
|
170 |
+
</map>
|
171 |
+
<map>
|
172 |
+
<framework name="/Concat_1" output_port_id="/Concat_1_output_0" />
|
173 |
+
<IR name="/Concat_1" output_port_id="2" />
|
174 |
+
</map>
|
175 |
+
<map>
|
176 |
+
<framework name="onnx::Conv_290" output_port_id="onnx::Conv_290" />
|
177 |
+
<IR name="onnx::Conv_290" output_port_id="0" />
|
178 |
+
</map>
|
179 |
+
<map>
|
180 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0" />
|
181 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="2" />
|
182 |
+
</map>
|
183 |
+
<map>
|
184 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0" />
|
185 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="1" />
|
186 |
+
</map>
|
187 |
+
<map>
|
188 |
+
<framework name="onnx::Conv_293" output_port_id="onnx::Conv_293" />
|
189 |
+
<IR name="onnx::Conv_293" output_port_id="0" />
|
190 |
+
</map>
|
191 |
+
<map>
|
192 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0" />
|
193 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="2" />
|
194 |
+
</map>
|
195 |
+
<map>
|
196 |
+
<framework name="onnx::Conv_296" output_port_id="onnx::Conv_296" />
|
197 |
+
<IR name="onnx::Conv_296" output_port_id="0" />
|
198 |
+
</map>
|
199 |
+
<map>
|
200 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0" />
|
201 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="2" />
|
202 |
+
</map>
|
203 |
+
<map>
|
204 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0" />
|
205 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="2" />
|
206 |
+
</map>
|
207 |
+
<map>
|
208 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0" />
|
209 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="1" />
|
210 |
+
</map>
|
211 |
+
<map>
|
212 |
+
<framework name="onnx::Conv_299" output_port_id="onnx::Conv_299" />
|
213 |
+
<IR name="onnx::Conv_299" output_port_id="0" />
|
214 |
+
</map>
|
215 |
+
<map>
|
216 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0" />
|
217 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="2" />
|
218 |
+
</map>
|
219 |
+
<map>
|
220 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0" />
|
221 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="1" />
|
222 |
+
</map>
|
223 |
+
<map>
|
224 |
+
<framework name="onnx::Conv_302" output_port_id="onnx::Conv_302" />
|
225 |
+
<IR name="onnx::Conv_302" output_port_id="0" />
|
226 |
+
</map>
|
227 |
+
<map>
|
228 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0" />
|
229 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="2" />
|
230 |
+
</map>
|
231 |
+
<map>
|
232 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0" />
|
233 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="2" />
|
234 |
+
</map>
|
235 |
+
<map>
|
236 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0" />
|
237 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="1" />
|
238 |
+
</map>
|
239 |
+
<map>
|
240 |
+
<framework name="/Shape_3" output_port_id="/Shape_3_output_0" />
|
241 |
+
<IR name="/Shape_3" output_port_id="1" />
|
242 |
+
</map>
|
243 |
+
<map>
|
244 |
+
<framework name="/Constant_9" output_port_id="/Constant_9_output_0" />
|
245 |
+
<IR name="/Constant_9" output_port_id="0" />
|
246 |
+
</map>
|
247 |
+
<map>
|
248 |
+
<framework name="/Constant_10" output_port_id="/Constant_10_output_0" />
|
249 |
+
<IR name="/Constant_10" output_port_id="0" />
|
250 |
+
</map>
|
251 |
+
<map>
|
252 |
+
<framework name="/Slice_1" output_port_id="/Slice_1_output_0" />
|
253 |
+
<IR name="/Slice_1" output_port_id="4" />
|
254 |
+
</map>
|
255 |
+
<map>
|
256 |
+
<framework name="/Shape_1" output_port_id="/Shape_1_output_0" />
|
257 |
+
<IR name="/Shape_1" output_port_id="1" />
|
258 |
+
</map>
|
259 |
+
<map>
|
260 |
+
<framework name="/Shape_1" output_port_id="/Shape_2_output_0" />
|
261 |
+
<IR name="/Shape_1" output_port_id="1" />
|
262 |
+
</map>
|
263 |
+
<map>
|
264 |
+
<framework name="Gather_6092" output_port_id="/Concat_2_output_0" />
|
265 |
+
<IR name="Gather_6092" output_port_id="3" />
|
266 |
+
</map>
|
267 |
+
<map>
|
268 |
+
<framework name="Gather_6092" output_port_id="/Cast_output_0" />
|
269 |
+
<IR name="Gather_6092" output_port_id="3" />
|
270 |
+
</map>
|
271 |
+
<map>
|
272 |
+
<framework name="/Concat_3" output_port_id="/Concat_3_output_0" />
|
273 |
+
<IR name="/Concat_3" output_port_id="2" />
|
274 |
+
</map>
|
275 |
+
<map>
|
276 |
+
<framework name="/Resize_1" output_port_id="/Resize_1_output_0" />
|
277 |
+
<IR name="/Resize_1" output_port_id="3" />
|
278 |
+
</map>
|
279 |
+
<map>
|
280 |
+
<framework name="/Concat_4" output_port_id="/Concat_4_output_0" />
|
281 |
+
<IR name="/Concat_4" output_port_id="2" />
|
282 |
+
</map>
|
283 |
+
<map>
|
284 |
+
<framework name="onnx::Gather_308" output_port_id="onnx::Gather_308" />
|
285 |
+
<IR name="onnx::Gather_308" output_port_id="0" />
|
286 |
+
</map>
|
287 |
+
<map>
|
288 |
+
<framework name="/Gather_2" output_port_id="/Gather_2_output_0" />
|
289 |
+
<IR name="/Gather_2" output_port_id="3" />
|
290 |
+
</map>
|
291 |
+
<map>
|
292 |
+
<framework name="/anomaly_map_generator/Constant" output_port_id="/anomaly_map_generator/Constant_output_0" />
|
293 |
+
<IR name="/anomaly_map_generator/Constant" output_port_id="0" />
|
294 |
+
</map>
|
295 |
+
<map>
|
296 |
+
<framework name="/anomaly_map_generator/Reshape" output_port_id="/anomaly_map_generator/Reshape_output_0" />
|
297 |
+
<IR name="/anomaly_map_generator/Reshape" output_port_id="2" />
|
298 |
+
</map>
|
299 |
+
<map>
|
300 |
+
<framework name="/anomaly_map_generator/Sub" output_port_id="/anomaly_map_generator/Sub_output_0" />
|
301 |
+
<IR name="/anomaly_map_generator/Sub" output_port_id="2" />
|
302 |
+
</map>
|
303 |
+
<map>
|
304 |
+
<framework name="/anomaly_map_generator/Transpose" output_port_id="/anomaly_map_generator/Transpose_output_0" />
|
305 |
+
<IR name="/anomaly_map_generator/Transpose" output_port_id="2" />
|
306 |
+
</map>
|
307 |
+
<map>
|
308 |
+
<framework name="onnx::MatMul_310" output_port_id="onnx::MatMul_310" />
|
309 |
+
<IR name="onnx::MatMul_310" output_port_id="0" />
|
310 |
+
</map>
|
311 |
+
<map>
|
312 |
+
<framework name="/anomaly_map_generator/MatMul" output_port_id="/anomaly_map_generator/MatMul_output_0" />
|
313 |
+
<IR name="/anomaly_map_generator/MatMul" output_port_id="2" />
|
314 |
+
</map>
|
315 |
+
<map>
|
316 |
+
<framework name="/anomaly_map_generator/Mul" output_port_id="/anomaly_map_generator/Mul_output_0" />
|
317 |
+
<IR name="/anomaly_map_generator/Mul" output_port_id="2" />
|
318 |
+
</map>
|
319 |
+
<map>
|
320 |
+
<framework name="/anomaly_map_generator/ReduceSum" output_port_id="/anomaly_map_generator/ReduceSum_output_0" />
|
321 |
+
<IR name="/anomaly_map_generator/ReduceSum" output_port_id="2" />
|
322 |
+
</map>
|
323 |
+
<map>
|
324 |
+
<framework name="/anomaly_map_generator/Constant_1" output_port_id="/anomaly_map_generator/Constant_1_output_0" />
|
325 |
+
<IR name="/anomaly_map_generator/Constant_1" output_port_id="0" />
|
326 |
+
</map>
|
327 |
+
<map>
|
328 |
+
<framework name="/anomaly_map_generator/Reshape_1" output_port_id="/anomaly_map_generator/Reshape_1_output_0" />
|
329 |
+
<IR name="/anomaly_map_generator/Reshape_1" output_port_id="2" />
|
330 |
+
</map>
|
331 |
+
<map>
|
332 |
+
<framework name="/anomaly_map_generator/Clip" output_port_id="/anomaly_map_generator/Clip_output_0" />
|
333 |
+
<IR name="/anomaly_map_generator/Clip" output_port_id="1" />
|
334 |
+
</map>
|
335 |
+
<map>
|
336 |
+
<framework name="/anomaly_map_generator/Sqrt" output_port_id="/anomaly_map_generator/Sqrt_output_0" />
|
337 |
+
<IR name="/anomaly_map_generator/Sqrt" output_port_id="1" />
|
338 |
+
</map>
|
339 |
+
<map>
|
340 |
+
<framework name="/anomaly_map_generator/Shape" output_port_id="/anomaly_map_generator/Shape_output_0" />
|
341 |
+
<IR name="/anomaly_map_generator/Shape" output_port_id="1" />
|
342 |
+
</map>
|
343 |
+
<map>
|
344 |
+
<framework name="/anomaly_map_generator/Constant_4" output_port_id="/anomaly_map_generator/Constant_4_output_0" />
|
345 |
+
<IR name="/anomaly_map_generator/Constant_4" output_port_id="0" />
|
346 |
+
</map>
|
347 |
+
<map>
|
348 |
+
<framework name="/anomaly_map_generator/Constant_5" output_port_id="/anomaly_map_generator/Constant_5_output_0" />
|
349 |
+
<IR name="/anomaly_map_generator/Constant_5" output_port_id="0" />
|
350 |
+
</map>
|
351 |
+
<map>
|
352 |
+
<framework name="/anomaly_map_generator/Slice" output_port_id="/anomaly_map_generator/Slice_output_0" />
|
353 |
+
<IR name="/anomaly_map_generator/Slice" output_port_id="4" />
|
354 |
+
</map>
|
355 |
+
<map>
|
356 |
+
<framework name="/anomaly_map_generator/Constant_6" output_port_id="/anomaly_map_generator/Constant_6_output_0" />
|
357 |
+
<IR name="/anomaly_map_generator/Constant_6" output_port_id="0" />
|
358 |
+
</map>
|
359 |
+
<map>
|
360 |
+
<framework name="/anomaly_map_generator/Concat" output_port_id="/anomaly_map_generator/Concat_output_0" />
|
361 |
+
<IR name="/anomaly_map_generator/Concat" output_port_id="2" />
|
362 |
+
</map>
|
363 |
+
<map>
|
364 |
+
<framework name="/anomaly_map_generator/Resize" output_port_id="/anomaly_map_generator/Resize_output_0" />
|
365 |
+
<IR name="/anomaly_map_generator/Resize" output_port_id="3" />
|
366 |
+
</map>
|
367 |
+
<map>
|
368 |
+
<framework name="/anomaly_map_generator/blur/Pad" output_port_id="/anomaly_map_generator/blur/Pad_output_0" />
|
369 |
+
<IR name="/anomaly_map_generator/blur/Pad" output_port_id="4" />
|
370 |
+
</map>
|
371 |
+
<map>
|
372 |
+
<framework name="anomaly_map_generator.blur.kernel" output_port_id="anomaly_map_generator.blur.kernel" />
|
373 |
+
<IR name="anomaly_map_generator.blur.kernel" output_port_id="0" />
|
374 |
+
</map>
|
375 |
+
<map>
|
376 |
+
<framework name="/anomaly_map_generator/blur/Conv" output_port_id="/anomaly_map_generator/blur/Conv_output_0" />
|
377 |
+
<IR name="/anomaly_map_generator/blur/Conv" output_port_id="2" />
|
378 |
+
</map>
|
379 |
+
<map>
|
380 |
+
<framework name="/anomaly_map_generator/blur/Constant_8" output_port_id="/anomaly_map_generator/blur/Constant_8_output_0" />
|
381 |
+
<IR name="/anomaly_map_generator/blur/Constant_8" output_port_id="0" />
|
382 |
+
</map>
|
383 |
+
<map>
|
384 |
+
<framework name="output" output_port_id="output" />
|
385 |
+
<IR name="output" output_port_id="2" />
|
386 |
+
</map>
|
387 |
+
</mapping>
|
grid/run/weights/openvino/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a5c998a95ec492be0d9981a09e7afa3f249ffad9589464d6c9ffc89d65930f9
|
3 |
+
size 176626689
|
grid/run/weights/openvino/model.xml
ADDED
@@ -0,0 +1,2703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="torch_jit" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="1,3,256,256" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>1</dim>
|
9 |
+
<dim>3</dim>
|
10 |
+
<dim>256</dim>
|
11 |
+
<dim>256</dim>
|
12 |
+
</port>
|
13 |
+
</output>
|
14 |
+
</layer>
|
15 |
+
<layer id="1" name="onnx::Conv_260" type="Const" version="opset1">
|
16 |
+
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
|
17 |
+
<output>
|
18 |
+
<port id="0" precision="FP32" names="onnx::Conv_260">
|
19 |
+
<dim>64</dim>
|
20 |
+
<dim>3</dim>
|
21 |
+
<dim>7</dim>
|
22 |
+
<dim>7</dim>
|
23 |
+
</port>
|
24 |
+
</output>
|
25 |
+
</layer>
|
26 |
+
<layer id="2" name="/feature_extractor/feature_extractor/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
27 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP32">
|
30 |
+
<dim>1</dim>
|
31 |
+
<dim>3</dim>
|
32 |
+
<dim>256</dim>
|
33 |
+
<dim>256</dim>
|
34 |
+
</port>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>64</dim>
|
37 |
+
<dim>3</dim>
|
38 |
+
<dim>7</dim>
|
39 |
+
<dim>7</dim>
|
40 |
+
</port>
|
41 |
+
</input>
|
42 |
+
<output>
|
43 |
+
<port id="2" precision="FP32">
|
44 |
+
<dim>1</dim>
|
45 |
+
<dim>64</dim>
|
46 |
+
<dim>128</dim>
|
47 |
+
<dim>128</dim>
|
48 |
+
</port>
|
49 |
+
</output>
|
50 |
+
</layer>
|
51 |
+
<layer id="3" name="Reshape_55" type="Const" version="opset1">
|
52 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
|
53 |
+
<output>
|
54 |
+
<port id="0" precision="FP32">
|
55 |
+
<dim>1</dim>
|
56 |
+
<dim>64</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
<dim>1</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="/feature_extractor/feature_extractor/conv1/Conv" type="Add" version="opset1">
|
63 |
+
<data auto_broadcast="numpy" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="FP32">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>64</dim>
|
68 |
+
<dim>128</dim>
|
69 |
+
<dim>128</dim>
|
70 |
+
</port>
|
71 |
+
<port id="1" precision="FP32">
|
72 |
+
<dim>1</dim>
|
73 |
+
<dim>64</dim>
|
74 |
+
<dim>1</dim>
|
75 |
+
<dim>1</dim>
|
76 |
+
</port>
|
77 |
+
</input>
|
78 |
+
<output>
|
79 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/conv1/Conv_output_0">
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>64</dim>
|
82 |
+
<dim>128</dim>
|
83 |
+
<dim>128</dim>
|
84 |
+
</port>
|
85 |
+
</output>
|
86 |
+
</layer>
|
87 |
+
<layer id="5" name="/feature_extractor/feature_extractor/act1/Relu" type="ReLU" version="opset1">
|
88 |
+
<input>
|
89 |
+
<port id="0" precision="FP32">
|
90 |
+
<dim>1</dim>
|
91 |
+
<dim>64</dim>
|
92 |
+
<dim>128</dim>
|
93 |
+
<dim>128</dim>
|
94 |
+
</port>
|
95 |
+
</input>
|
96 |
+
<output>
|
97 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/act1/Relu_output_0">
|
98 |
+
<dim>1</dim>
|
99 |
+
<dim>64</dim>
|
100 |
+
<dim>128</dim>
|
101 |
+
<dim>128</dim>
|
102 |
+
</port>
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="6" name="/feature_extractor/feature_extractor/maxpool/MaxPool" type="MaxPool" version="opset8">
|
106 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="0" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="FP32">
|
109 |
+
<dim>1</dim>
|
110 |
+
<dim>64</dim>
|
111 |
+
<dim>128</dim>
|
112 |
+
<dim>128</dim>
|
113 |
+
</port>
|
114 |
+
</input>
|
115 |
+
<output>
|
116 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0">
|
117 |
+
<dim>1</dim>
|
118 |
+
<dim>64</dim>
|
119 |
+
<dim>64</dim>
|
120 |
+
<dim>64</dim>
|
121 |
+
</port>
|
122 |
+
<port id="2" precision="I64">
|
123 |
+
<dim>1</dim>
|
124 |
+
<dim>64</dim>
|
125 |
+
<dim>64</dim>
|
126 |
+
<dim>64</dim>
|
127 |
+
</port>
|
128 |
+
</output>
|
129 |
+
</layer>
|
130 |
+
<layer id="7" name="onnx::Conv_263" type="Const" version="opset1">
|
131 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="37888" size="147456" />
|
132 |
+
<output>
|
133 |
+
<port id="0" precision="FP32" names="onnx::Conv_263">
|
134 |
+
<dim>64</dim>
|
135 |
+
<dim>64</dim>
|
136 |
+
<dim>3</dim>
|
137 |
+
<dim>3</dim>
|
138 |
+
</port>
|
139 |
+
</output>
|
140 |
+
</layer>
|
141 |
+
<layer id="8" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
142 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="FP32">
|
145 |
+
<dim>1</dim>
|
146 |
+
<dim>64</dim>
|
147 |
+
<dim>64</dim>
|
148 |
+
<dim>64</dim>
|
149 |
+
</port>
|
150 |
+
<port id="1" precision="FP32">
|
151 |
+
<dim>64</dim>
|
152 |
+
<dim>64</dim>
|
153 |
+
<dim>3</dim>
|
154 |
+
<dim>3</dim>
|
155 |
+
</port>
|
156 |
+
</input>
|
157 |
+
<output>
|
158 |
+
<port id="2" precision="FP32">
|
159 |
+
<dim>1</dim>
|
160 |
+
<dim>64</dim>
|
161 |
+
<dim>64</dim>
|
162 |
+
<dim>64</dim>
|
163 |
+
</port>
|
164 |
+
</output>
|
165 |
+
</layer>
|
166 |
+
<layer id="9" name="Reshape_105" type="Const" version="opset1">
|
167 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="185344" size="256" />
|
168 |
+
<output>
|
169 |
+
<port id="0" precision="FP32">
|
170 |
+
<dim>1</dim>
|
171 |
+
<dim>64</dim>
|
172 |
+
<dim>1</dim>
|
173 |
+
<dim>1</dim>
|
174 |
+
</port>
|
175 |
+
</output>
|
176 |
+
</layer>
|
177 |
+
<layer id="10" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" type="Add" version="opset1">
|
178 |
+
<data auto_broadcast="numpy" />
|
179 |
+
<input>
|
180 |
+
<port id="0" precision="FP32">
|
181 |
+
<dim>1</dim>
|
182 |
+
<dim>64</dim>
|
183 |
+
<dim>64</dim>
|
184 |
+
<dim>64</dim>
|
185 |
+
</port>
|
186 |
+
<port id="1" precision="FP32">
|
187 |
+
<dim>1</dim>
|
188 |
+
<dim>64</dim>
|
189 |
+
<dim>1</dim>
|
190 |
+
<dim>1</dim>
|
191 |
+
</port>
|
192 |
+
</input>
|
193 |
+
<output>
|
194 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0">
|
195 |
+
<dim>1</dim>
|
196 |
+
<dim>64</dim>
|
197 |
+
<dim>64</dim>
|
198 |
+
<dim>64</dim>
|
199 |
+
</port>
|
200 |
+
</output>
|
201 |
+
</layer>
|
202 |
+
<layer id="11" name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" type="ReLU" version="opset1">
|
203 |
+
<input>
|
204 |
+
<port id="0" precision="FP32">
|
205 |
+
<dim>1</dim>
|
206 |
+
<dim>64</dim>
|
207 |
+
<dim>64</dim>
|
208 |
+
<dim>64</dim>
|
209 |
+
</port>
|
210 |
+
</input>
|
211 |
+
<output>
|
212 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0">
|
213 |
+
<dim>1</dim>
|
214 |
+
<dim>64</dim>
|
215 |
+
<dim>64</dim>
|
216 |
+
<dim>64</dim>
|
217 |
+
</port>
|
218 |
+
</output>
|
219 |
+
</layer>
|
220 |
+
<layer id="12" name="onnx::Conv_266" type="Const" version="opset1">
|
221 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="185600" size="147456" />
|
222 |
+
<output>
|
223 |
+
<port id="0" precision="FP32" names="onnx::Conv_266">
|
224 |
+
<dim>64</dim>
|
225 |
+
<dim>64</dim>
|
226 |
+
<dim>3</dim>
|
227 |
+
<dim>3</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="13" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
232 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
233 |
+
<input>
|
234 |
+
<port id="0" precision="FP32">
|
235 |
+
<dim>1</dim>
|
236 |
+
<dim>64</dim>
|
237 |
+
<dim>64</dim>
|
238 |
+
<dim>64</dim>
|
239 |
+
</port>
|
240 |
+
<port id="1" precision="FP32">
|
241 |
+
<dim>64</dim>
|
242 |
+
<dim>64</dim>
|
243 |
+
<dim>3</dim>
|
244 |
+
<dim>3</dim>
|
245 |
+
</port>
|
246 |
+
</input>
|
247 |
+
<output>
|
248 |
+
<port id="2" precision="FP32">
|
249 |
+
<dim>1</dim>
|
250 |
+
<dim>64</dim>
|
251 |
+
<dim>64</dim>
|
252 |
+
<dim>64</dim>
|
253 |
+
</port>
|
254 |
+
</output>
|
255 |
+
</layer>
|
256 |
+
<layer id="14" name="Reshape_154" type="Const" version="opset1">
|
257 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="333056" size="256" />
|
258 |
+
<output>
|
259 |
+
<port id="0" precision="FP32">
|
260 |
+
<dim>1</dim>
|
261 |
+
<dim>64</dim>
|
262 |
+
<dim>1</dim>
|
263 |
+
<dim>1</dim>
|
264 |
+
</port>
|
265 |
+
</output>
|
266 |
+
</layer>
|
267 |
+
<layer id="15" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" type="Add" version="opset1">
|
268 |
+
<data auto_broadcast="numpy" />
|
269 |
+
<input>
|
270 |
+
<port id="0" precision="FP32">
|
271 |
+
<dim>1</dim>
|
272 |
+
<dim>64</dim>
|
273 |
+
<dim>64</dim>
|
274 |
+
<dim>64</dim>
|
275 |
+
</port>
|
276 |
+
<port id="1" precision="FP32">
|
277 |
+
<dim>1</dim>
|
278 |
+
<dim>64</dim>
|
279 |
+
<dim>1</dim>
|
280 |
+
<dim>1</dim>
|
281 |
+
</port>
|
282 |
+
</input>
|
283 |
+
<output>
|
284 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0">
|
285 |
+
<dim>1</dim>
|
286 |
+
<dim>64</dim>
|
287 |
+
<dim>64</dim>
|
288 |
+
<dim>64</dim>
|
289 |
+
</port>
|
290 |
+
</output>
|
291 |
+
</layer>
|
292 |
+
<layer id="16" name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" type="Add" version="opset1">
|
293 |
+
<data auto_broadcast="numpy" />
|
294 |
+
<input>
|
295 |
+
<port id="0" precision="FP32">
|
296 |
+
<dim>1</dim>
|
297 |
+
<dim>64</dim>
|
298 |
+
<dim>64</dim>
|
299 |
+
<dim>64</dim>
|
300 |
+
</port>
|
301 |
+
<port id="1" precision="FP32">
|
302 |
+
<dim>1</dim>
|
303 |
+
<dim>64</dim>
|
304 |
+
<dim>64</dim>
|
305 |
+
<dim>64</dim>
|
306 |
+
</port>
|
307 |
+
</input>
|
308 |
+
<output>
|
309 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0">
|
310 |
+
<dim>1</dim>
|
311 |
+
<dim>64</dim>
|
312 |
+
<dim>64</dim>
|
313 |
+
<dim>64</dim>
|
314 |
+
</port>
|
315 |
+
</output>
|
316 |
+
</layer>
|
317 |
+
<layer id="17" name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" type="ReLU" version="opset1">
|
318 |
+
<input>
|
319 |
+
<port id="0" precision="FP32">
|
320 |
+
<dim>1</dim>
|
321 |
+
<dim>64</dim>
|
322 |
+
<dim>64</dim>
|
323 |
+
<dim>64</dim>
|
324 |
+
</port>
|
325 |
+
</input>
|
326 |
+
<output>
|
327 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0">
|
328 |
+
<dim>1</dim>
|
329 |
+
<dim>64</dim>
|
330 |
+
<dim>64</dim>
|
331 |
+
<dim>64</dim>
|
332 |
+
</port>
|
333 |
+
</output>
|
334 |
+
</layer>
|
335 |
+
<layer id="18" name="onnx::Conv_269" type="Const" version="opset1">
|
336 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="333312" size="147456" />
|
337 |
+
<output>
|
338 |
+
<port id="0" precision="FP32" names="onnx::Conv_269">
|
339 |
+
<dim>64</dim>
|
340 |
+
<dim>64</dim>
|
341 |
+
<dim>3</dim>
|
342 |
+
<dim>3</dim>
|
343 |
+
</port>
|
344 |
+
</output>
|
345 |
+
</layer>
|
346 |
+
<layer id="19" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
347 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
348 |
+
<input>
|
349 |
+
<port id="0" precision="FP32">
|
350 |
+
<dim>1</dim>
|
351 |
+
<dim>64</dim>
|
352 |
+
<dim>64</dim>
|
353 |
+
<dim>64</dim>
|
354 |
+
</port>
|
355 |
+
<port id="1" precision="FP32">
|
356 |
+
<dim>64</dim>
|
357 |
+
<dim>64</dim>
|
358 |
+
<dim>3</dim>
|
359 |
+
<dim>3</dim>
|
360 |
+
</port>
|
361 |
+
</input>
|
362 |
+
<output>
|
363 |
+
<port id="2" precision="FP32">
|
364 |
+
<dim>1</dim>
|
365 |
+
<dim>64</dim>
|
366 |
+
<dim>64</dim>
|
367 |
+
<dim>64</dim>
|
368 |
+
</port>
|
369 |
+
</output>
|
370 |
+
</layer>
|
371 |
+
<layer id="20" name="Reshape_204" type="Const" version="opset1">
|
372 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="480768" size="256" />
|
373 |
+
<output>
|
374 |
+
<port id="0" precision="FP32">
|
375 |
+
<dim>1</dim>
|
376 |
+
<dim>64</dim>
|
377 |
+
<dim>1</dim>
|
378 |
+
<dim>1</dim>
|
379 |
+
</port>
|
380 |
+
</output>
|
381 |
+
</layer>
|
382 |
+
<layer id="21" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" type="Add" version="opset1">
|
383 |
+
<data auto_broadcast="numpy" />
|
384 |
+
<input>
|
385 |
+
<port id="0" precision="FP32">
|
386 |
+
<dim>1</dim>
|
387 |
+
<dim>64</dim>
|
388 |
+
<dim>64</dim>
|
389 |
+
<dim>64</dim>
|
390 |
+
</port>
|
391 |
+
<port id="1" precision="FP32">
|
392 |
+
<dim>1</dim>
|
393 |
+
<dim>64</dim>
|
394 |
+
<dim>1</dim>
|
395 |
+
<dim>1</dim>
|
396 |
+
</port>
|
397 |
+
</input>
|
398 |
+
<output>
|
399 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0">
|
400 |
+
<dim>1</dim>
|
401 |
+
<dim>64</dim>
|
402 |
+
<dim>64</dim>
|
403 |
+
<dim>64</dim>
|
404 |
+
</port>
|
405 |
+
</output>
|
406 |
+
</layer>
|
407 |
+
<layer id="22" name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" type="ReLU" version="opset1">
|
408 |
+
<input>
|
409 |
+
<port id="0" precision="FP32">
|
410 |
+
<dim>1</dim>
|
411 |
+
<dim>64</dim>
|
412 |
+
<dim>64</dim>
|
413 |
+
<dim>64</dim>
|
414 |
+
</port>
|
415 |
+
</input>
|
416 |
+
<output>
|
417 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0">
|
418 |
+
<dim>1</dim>
|
419 |
+
<dim>64</dim>
|
420 |
+
<dim>64</dim>
|
421 |
+
<dim>64</dim>
|
422 |
+
</port>
|
423 |
+
</output>
|
424 |
+
</layer>
|
425 |
+
<layer id="23" name="onnx::Conv_272" type="Const" version="opset1">
|
426 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="481024" size="147456" />
|
427 |
+
<output>
|
428 |
+
<port id="0" precision="FP32" names="onnx::Conv_272">
|
429 |
+
<dim>64</dim>
|
430 |
+
<dim>64</dim>
|
431 |
+
<dim>3</dim>
|
432 |
+
<dim>3</dim>
|
433 |
+
</port>
|
434 |
+
</output>
|
435 |
+
</layer>
|
436 |
+
<layer id="24" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
437 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
438 |
+
<input>
|
439 |
+
<port id="0" precision="FP32">
|
440 |
+
<dim>1</dim>
|
441 |
+
<dim>64</dim>
|
442 |
+
<dim>64</dim>
|
443 |
+
<dim>64</dim>
|
444 |
+
</port>
|
445 |
+
<port id="1" precision="FP32">
|
446 |
+
<dim>64</dim>
|
447 |
+
<dim>64</dim>
|
448 |
+
<dim>3</dim>
|
449 |
+
<dim>3</dim>
|
450 |
+
</port>
|
451 |
+
</input>
|
452 |
+
<output>
|
453 |
+
<port id="2" precision="FP32">
|
454 |
+
<dim>1</dim>
|
455 |
+
<dim>64</dim>
|
456 |
+
<dim>64</dim>
|
457 |
+
<dim>64</dim>
|
458 |
+
</port>
|
459 |
+
</output>
|
460 |
+
</layer>
|
461 |
+
<layer id="25" name="Reshape_253" type="Const" version="opset1">
|
462 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="628480" size="256" />
|
463 |
+
<output>
|
464 |
+
<port id="0" precision="FP32">
|
465 |
+
<dim>1</dim>
|
466 |
+
<dim>64</dim>
|
467 |
+
<dim>1</dim>
|
468 |
+
<dim>1</dim>
|
469 |
+
</port>
|
470 |
+
</output>
|
471 |
+
</layer>
|
472 |
+
<layer id="26" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" type="Add" version="opset1">
|
473 |
+
<data auto_broadcast="numpy" />
|
474 |
+
<input>
|
475 |
+
<port id="0" precision="FP32">
|
476 |
+
<dim>1</dim>
|
477 |
+
<dim>64</dim>
|
478 |
+
<dim>64</dim>
|
479 |
+
<dim>64</dim>
|
480 |
+
</port>
|
481 |
+
<port id="1" precision="FP32">
|
482 |
+
<dim>1</dim>
|
483 |
+
<dim>64</dim>
|
484 |
+
<dim>1</dim>
|
485 |
+
<dim>1</dim>
|
486 |
+
</port>
|
487 |
+
</input>
|
488 |
+
<output>
|
489 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0">
|
490 |
+
<dim>1</dim>
|
491 |
+
<dim>64</dim>
|
492 |
+
<dim>64</dim>
|
493 |
+
<dim>64</dim>
|
494 |
+
</port>
|
495 |
+
</output>
|
496 |
+
</layer>
|
497 |
+
<layer id="27" name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" type="Add" version="opset1">
|
498 |
+
<data auto_broadcast="numpy" />
|
499 |
+
<input>
|
500 |
+
<port id="0" precision="FP32">
|
501 |
+
<dim>1</dim>
|
502 |
+
<dim>64</dim>
|
503 |
+
<dim>64</dim>
|
504 |
+
<dim>64</dim>
|
505 |
+
</port>
|
506 |
+
<port id="1" precision="FP32">
|
507 |
+
<dim>1</dim>
|
508 |
+
<dim>64</dim>
|
509 |
+
<dim>64</dim>
|
510 |
+
<dim>64</dim>
|
511 |
+
</port>
|
512 |
+
</input>
|
513 |
+
<output>
|
514 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0">
|
515 |
+
<dim>1</dim>
|
516 |
+
<dim>64</dim>
|
517 |
+
<dim>64</dim>
|
518 |
+
<dim>64</dim>
|
519 |
+
</port>
|
520 |
+
</output>
|
521 |
+
</layer>
|
522 |
+
<layer id="28" name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" type="ReLU" version="opset1">
|
523 |
+
<input>
|
524 |
+
<port id="0" precision="FP32">
|
525 |
+
<dim>1</dim>
|
526 |
+
<dim>64</dim>
|
527 |
+
<dim>64</dim>
|
528 |
+
<dim>64</dim>
|
529 |
+
</port>
|
530 |
+
</input>
|
531 |
+
<output>
|
532 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0">
|
533 |
+
<dim>1</dim>
|
534 |
+
<dim>64</dim>
|
535 |
+
<dim>64</dim>
|
536 |
+
<dim>64</dim>
|
537 |
+
</port>
|
538 |
+
</output>
|
539 |
+
</layer>
|
540 |
+
<layer id="29" name="onnx::Conv_275" type="Const" version="opset1">
|
541 |
+
<data element_type="f32" shape="128, 64, 3, 3" offset="628736" size="294912" />
|
542 |
+
<output>
|
543 |
+
<port id="0" precision="FP32" names="onnx::Conv_275">
|
544 |
+
<dim>128</dim>
|
545 |
+
<dim>64</dim>
|
546 |
+
<dim>3</dim>
|
547 |
+
<dim>3</dim>
|
548 |
+
</port>
|
549 |
+
</output>
|
550 |
+
</layer>
|
551 |
+
<layer id="30" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
552 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
553 |
+
<input>
|
554 |
+
<port id="0" precision="FP32">
|
555 |
+
<dim>1</dim>
|
556 |
+
<dim>64</dim>
|
557 |
+
<dim>64</dim>
|
558 |
+
<dim>64</dim>
|
559 |
+
</port>
|
560 |
+
<port id="1" precision="FP32">
|
561 |
+
<dim>128</dim>
|
562 |
+
<dim>64</dim>
|
563 |
+
<dim>3</dim>
|
564 |
+
<dim>3</dim>
|
565 |
+
</port>
|
566 |
+
</input>
|
567 |
+
<output>
|
568 |
+
<port id="2" precision="FP32">
|
569 |
+
<dim>1</dim>
|
570 |
+
<dim>128</dim>
|
571 |
+
<dim>32</dim>
|
572 |
+
<dim>32</dim>
|
573 |
+
</port>
|
574 |
+
</output>
|
575 |
+
</layer>
|
576 |
+
<layer id="31" name="Reshape_303" type="Const" version="opset1">
|
577 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="923648" size="512" />
|
578 |
+
<output>
|
579 |
+
<port id="0" precision="FP32">
|
580 |
+
<dim>1</dim>
|
581 |
+
<dim>128</dim>
|
582 |
+
<dim>1</dim>
|
583 |
+
<dim>1</dim>
|
584 |
+
</port>
|
585 |
+
</output>
|
586 |
+
</layer>
|
587 |
+
<layer id="32" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" type="Add" version="opset1">
|
588 |
+
<data auto_broadcast="numpy" />
|
589 |
+
<input>
|
590 |
+
<port id="0" precision="FP32">
|
591 |
+
<dim>1</dim>
|
592 |
+
<dim>128</dim>
|
593 |
+
<dim>32</dim>
|
594 |
+
<dim>32</dim>
|
595 |
+
</port>
|
596 |
+
<port id="1" precision="FP32">
|
597 |
+
<dim>1</dim>
|
598 |
+
<dim>128</dim>
|
599 |
+
<dim>1</dim>
|
600 |
+
<dim>1</dim>
|
601 |
+
</port>
|
602 |
+
</input>
|
603 |
+
<output>
|
604 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0">
|
605 |
+
<dim>1</dim>
|
606 |
+
<dim>128</dim>
|
607 |
+
<dim>32</dim>
|
608 |
+
<dim>32</dim>
|
609 |
+
</port>
|
610 |
+
</output>
|
611 |
+
</layer>
|
612 |
+
<layer id="33" name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" type="ReLU" version="opset1">
|
613 |
+
<input>
|
614 |
+
<port id="0" precision="FP32">
|
615 |
+
<dim>1</dim>
|
616 |
+
<dim>128</dim>
|
617 |
+
<dim>32</dim>
|
618 |
+
<dim>32</dim>
|
619 |
+
</port>
|
620 |
+
</input>
|
621 |
+
<output>
|
622 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0">
|
623 |
+
<dim>1</dim>
|
624 |
+
<dim>128</dim>
|
625 |
+
<dim>32</dim>
|
626 |
+
<dim>32</dim>
|
627 |
+
</port>
|
628 |
+
</output>
|
629 |
+
</layer>
|
630 |
+
<layer id="34" name="onnx::Conv_278" type="Const" version="opset1">
|
631 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="924160" size="589824" />
|
632 |
+
<output>
|
633 |
+
<port id="0" precision="FP32" names="onnx::Conv_278">
|
634 |
+
<dim>128</dim>
|
635 |
+
<dim>128</dim>
|
636 |
+
<dim>3</dim>
|
637 |
+
<dim>3</dim>
|
638 |
+
</port>
|
639 |
+
</output>
|
640 |
+
</layer>
|
641 |
+
<layer id="35" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
642 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
643 |
+
<input>
|
644 |
+
<port id="0" precision="FP32">
|
645 |
+
<dim>1</dim>
|
646 |
+
<dim>128</dim>
|
647 |
+
<dim>32</dim>
|
648 |
+
<dim>32</dim>
|
649 |
+
</port>
|
650 |
+
<port id="1" precision="FP32">
|
651 |
+
<dim>128</dim>
|
652 |
+
<dim>128</dim>
|
653 |
+
<dim>3</dim>
|
654 |
+
<dim>3</dim>
|
655 |
+
</port>
|
656 |
+
</input>
|
657 |
+
<output>
|
658 |
+
<port id="2" precision="FP32">
|
659 |
+
<dim>1</dim>
|
660 |
+
<dim>128</dim>
|
661 |
+
<dim>32</dim>
|
662 |
+
<dim>32</dim>
|
663 |
+
</port>
|
664 |
+
</output>
|
665 |
+
</layer>
|
666 |
+
<layer id="36" name="Reshape_352" type="Const" version="opset1">
|
667 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1513984" size="512" />
|
668 |
+
<output>
|
669 |
+
<port id="0" precision="FP32">
|
670 |
+
<dim>1</dim>
|
671 |
+
<dim>128</dim>
|
672 |
+
<dim>1</dim>
|
673 |
+
<dim>1</dim>
|
674 |
+
</port>
|
675 |
+
</output>
|
676 |
+
</layer>
|
677 |
+
<layer id="37" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" type="Add" version="opset1">
|
678 |
+
<data auto_broadcast="numpy" />
|
679 |
+
<input>
|
680 |
+
<port id="0" precision="FP32">
|
681 |
+
<dim>1</dim>
|
682 |
+
<dim>128</dim>
|
683 |
+
<dim>32</dim>
|
684 |
+
<dim>32</dim>
|
685 |
+
</port>
|
686 |
+
<port id="1" precision="FP32">
|
687 |
+
<dim>1</dim>
|
688 |
+
<dim>128</dim>
|
689 |
+
<dim>1</dim>
|
690 |
+
<dim>1</dim>
|
691 |
+
</port>
|
692 |
+
</input>
|
693 |
+
<output>
|
694 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0">
|
695 |
+
<dim>1</dim>
|
696 |
+
<dim>128</dim>
|
697 |
+
<dim>32</dim>
|
698 |
+
<dim>32</dim>
|
699 |
+
</port>
|
700 |
+
</output>
|
701 |
+
</layer>
|
702 |
+
<layer id="38" name="onnx::Conv_281" type="Const" version="opset1">
|
703 |
+
<data element_type="f32" shape="128, 64, 1, 1" offset="1514496" size="32768" />
|
704 |
+
<output>
|
705 |
+
<port id="0" precision="FP32" names="onnx::Conv_281">
|
706 |
+
<dim>128</dim>
|
707 |
+
<dim>64</dim>
|
708 |
+
<dim>1</dim>
|
709 |
+
<dim>1</dim>
|
710 |
+
</port>
|
711 |
+
</output>
|
712 |
+
</layer>
|
713 |
+
<layer id="39" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
714 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
715 |
+
<input>
|
716 |
+
<port id="0" precision="FP32">
|
717 |
+
<dim>1</dim>
|
718 |
+
<dim>64</dim>
|
719 |
+
<dim>64</dim>
|
720 |
+
<dim>64</dim>
|
721 |
+
</port>
|
722 |
+
<port id="1" precision="FP32">
|
723 |
+
<dim>128</dim>
|
724 |
+
<dim>64</dim>
|
725 |
+
<dim>1</dim>
|
726 |
+
<dim>1</dim>
|
727 |
+
</port>
|
728 |
+
</input>
|
729 |
+
<output>
|
730 |
+
<port id="2" precision="FP32">
|
731 |
+
<dim>1</dim>
|
732 |
+
<dim>128</dim>
|
733 |
+
<dim>32</dim>
|
734 |
+
<dim>32</dim>
|
735 |
+
</port>
|
736 |
+
</output>
|
737 |
+
</layer>
|
738 |
+
<layer id="40" name="Reshape_400" type="Const" version="opset1">
|
739 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1547264" size="512" />
|
740 |
+
<output>
|
741 |
+
<port id="0" precision="FP32">
|
742 |
+
<dim>1</dim>
|
743 |
+
<dim>128</dim>
|
744 |
+
<dim>1</dim>
|
745 |
+
<dim>1</dim>
|
746 |
+
</port>
|
747 |
+
</output>
|
748 |
+
</layer>
|
749 |
+
<layer id="41" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
750 |
+
<data auto_broadcast="numpy" />
|
751 |
+
<input>
|
752 |
+
<port id="0" precision="FP32">
|
753 |
+
<dim>1</dim>
|
754 |
+
<dim>128</dim>
|
755 |
+
<dim>32</dim>
|
756 |
+
<dim>32</dim>
|
757 |
+
</port>
|
758 |
+
<port id="1" precision="FP32">
|
759 |
+
<dim>1</dim>
|
760 |
+
<dim>128</dim>
|
761 |
+
<dim>1</dim>
|
762 |
+
<dim>1</dim>
|
763 |
+
</port>
|
764 |
+
</input>
|
765 |
+
<output>
|
766 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0">
|
767 |
+
<dim>1</dim>
|
768 |
+
<dim>128</dim>
|
769 |
+
<dim>32</dim>
|
770 |
+
<dim>32</dim>
|
771 |
+
</port>
|
772 |
+
</output>
|
773 |
+
</layer>
|
774 |
+
<layer id="42" name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" type="Add" version="opset1">
|
775 |
+
<data auto_broadcast="numpy" />
|
776 |
+
<input>
|
777 |
+
<port id="0" precision="FP32">
|
778 |
+
<dim>1</dim>
|
779 |
+
<dim>128</dim>
|
780 |
+
<dim>32</dim>
|
781 |
+
<dim>32</dim>
|
782 |
+
</port>
|
783 |
+
<port id="1" precision="FP32">
|
784 |
+
<dim>1</dim>
|
785 |
+
<dim>128</dim>
|
786 |
+
<dim>32</dim>
|
787 |
+
<dim>32</dim>
|
788 |
+
</port>
|
789 |
+
</input>
|
790 |
+
<output>
|
791 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0">
|
792 |
+
<dim>1</dim>
|
793 |
+
<dim>128</dim>
|
794 |
+
<dim>32</dim>
|
795 |
+
<dim>32</dim>
|
796 |
+
</port>
|
797 |
+
</output>
|
798 |
+
</layer>
|
799 |
+
<layer id="43" name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" type="ReLU" version="opset1">
|
800 |
+
<input>
|
801 |
+
<port id="0" precision="FP32">
|
802 |
+
<dim>1</dim>
|
803 |
+
<dim>128</dim>
|
804 |
+
<dim>32</dim>
|
805 |
+
<dim>32</dim>
|
806 |
+
</port>
|
807 |
+
</input>
|
808 |
+
<output>
|
809 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0">
|
810 |
+
<dim>1</dim>
|
811 |
+
<dim>128</dim>
|
812 |
+
<dim>32</dim>
|
813 |
+
<dim>32</dim>
|
814 |
+
</port>
|
815 |
+
</output>
|
816 |
+
</layer>
|
817 |
+
<layer id="44" name="onnx::Conv_284" type="Const" version="opset1">
|
818 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="1547776" size="589824" />
|
819 |
+
<output>
|
820 |
+
<port id="0" precision="FP32" names="onnx::Conv_284">
|
821 |
+
<dim>128</dim>
|
822 |
+
<dim>128</dim>
|
823 |
+
<dim>3</dim>
|
824 |
+
<dim>3</dim>
|
825 |
+
</port>
|
826 |
+
</output>
|
827 |
+
</layer>
|
828 |
+
<layer id="45" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
829 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
830 |
+
<input>
|
831 |
+
<port id="0" precision="FP32">
|
832 |
+
<dim>1</dim>
|
833 |
+
<dim>128</dim>
|
834 |
+
<dim>32</dim>
|
835 |
+
<dim>32</dim>
|
836 |
+
</port>
|
837 |
+
<port id="1" precision="FP32">
|
838 |
+
<dim>128</dim>
|
839 |
+
<dim>128</dim>
|
840 |
+
<dim>3</dim>
|
841 |
+
<dim>3</dim>
|
842 |
+
</port>
|
843 |
+
</input>
|
844 |
+
<output>
|
845 |
+
<port id="2" precision="FP32">
|
846 |
+
<dim>1</dim>
|
847 |
+
<dim>128</dim>
|
848 |
+
<dim>32</dim>
|
849 |
+
<dim>32</dim>
|
850 |
+
</port>
|
851 |
+
</output>
|
852 |
+
</layer>
|
853 |
+
<layer id="46" name="Reshape_450" type="Const" version="opset1">
|
854 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2137600" size="512" />
|
855 |
+
<output>
|
856 |
+
<port id="0" precision="FP32">
|
857 |
+
<dim>1</dim>
|
858 |
+
<dim>128</dim>
|
859 |
+
<dim>1</dim>
|
860 |
+
<dim>1</dim>
|
861 |
+
</port>
|
862 |
+
</output>
|
863 |
+
</layer>
|
864 |
+
<layer id="47" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" type="Add" version="opset1">
|
865 |
+
<data auto_broadcast="numpy" />
|
866 |
+
<input>
|
867 |
+
<port id="0" precision="FP32">
|
868 |
+
<dim>1</dim>
|
869 |
+
<dim>128</dim>
|
870 |
+
<dim>32</dim>
|
871 |
+
<dim>32</dim>
|
872 |
+
</port>
|
873 |
+
<port id="1" precision="FP32">
|
874 |
+
<dim>1</dim>
|
875 |
+
<dim>128</dim>
|
876 |
+
<dim>1</dim>
|
877 |
+
<dim>1</dim>
|
878 |
+
</port>
|
879 |
+
</input>
|
880 |
+
<output>
|
881 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0">
|
882 |
+
<dim>1</dim>
|
883 |
+
<dim>128</dim>
|
884 |
+
<dim>32</dim>
|
885 |
+
<dim>32</dim>
|
886 |
+
</port>
|
887 |
+
</output>
|
888 |
+
</layer>
|
889 |
+
<layer id="48" name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" type="ReLU" version="opset1">
|
890 |
+
<input>
|
891 |
+
<port id="0" precision="FP32">
|
892 |
+
<dim>1</dim>
|
893 |
+
<dim>128</dim>
|
894 |
+
<dim>32</dim>
|
895 |
+
<dim>32</dim>
|
896 |
+
</port>
|
897 |
+
</input>
|
898 |
+
<output>
|
899 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0">
|
900 |
+
<dim>1</dim>
|
901 |
+
<dim>128</dim>
|
902 |
+
<dim>32</dim>
|
903 |
+
<dim>32</dim>
|
904 |
+
</port>
|
905 |
+
</output>
|
906 |
+
</layer>
|
907 |
+
<layer id="49" name="onnx::Conv_287" type="Const" version="opset1">
|
908 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="2138112" size="589824" />
|
909 |
+
<output>
|
910 |
+
<port id="0" precision="FP32" names="onnx::Conv_287">
|
911 |
+
<dim>128</dim>
|
912 |
+
<dim>128</dim>
|
913 |
+
<dim>3</dim>
|
914 |
+
<dim>3</dim>
|
915 |
+
</port>
|
916 |
+
</output>
|
917 |
+
</layer>
|
918 |
+
<layer id="50" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
919 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
920 |
+
<input>
|
921 |
+
<port id="0" precision="FP32">
|
922 |
+
<dim>1</dim>
|
923 |
+
<dim>128</dim>
|
924 |
+
<dim>32</dim>
|
925 |
+
<dim>32</dim>
|
926 |
+
</port>
|
927 |
+
<port id="1" precision="FP32">
|
928 |
+
<dim>128</dim>
|
929 |
+
<dim>128</dim>
|
930 |
+
<dim>3</dim>
|
931 |
+
<dim>3</dim>
|
932 |
+
</port>
|
933 |
+
</input>
|
934 |
+
<output>
|
935 |
+
<port id="2" precision="FP32">
|
936 |
+
<dim>1</dim>
|
937 |
+
<dim>128</dim>
|
938 |
+
<dim>32</dim>
|
939 |
+
<dim>32</dim>
|
940 |
+
</port>
|
941 |
+
</output>
|
942 |
+
</layer>
|
943 |
+
<layer id="51" name="Reshape_499" type="Const" version="opset1">
|
944 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2727936" size="512" />
|
945 |
+
<output>
|
946 |
+
<port id="0" precision="FP32">
|
947 |
+
<dim>1</dim>
|
948 |
+
<dim>128</dim>
|
949 |
+
<dim>1</dim>
|
950 |
+
<dim>1</dim>
|
951 |
+
</port>
|
952 |
+
</output>
|
953 |
+
</layer>
|
954 |
+
<layer id="52" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" type="Add" version="opset1">
|
955 |
+
<data auto_broadcast="numpy" />
|
956 |
+
<input>
|
957 |
+
<port id="0" precision="FP32">
|
958 |
+
<dim>1</dim>
|
959 |
+
<dim>128</dim>
|
960 |
+
<dim>32</dim>
|
961 |
+
<dim>32</dim>
|
962 |
+
</port>
|
963 |
+
<port id="1" precision="FP32">
|
964 |
+
<dim>1</dim>
|
965 |
+
<dim>128</dim>
|
966 |
+
<dim>1</dim>
|
967 |
+
<dim>1</dim>
|
968 |
+
</port>
|
969 |
+
</input>
|
970 |
+
<output>
|
971 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0">
|
972 |
+
<dim>1</dim>
|
973 |
+
<dim>128</dim>
|
974 |
+
<dim>32</dim>
|
975 |
+
<dim>32</dim>
|
976 |
+
</port>
|
977 |
+
</output>
|
978 |
+
</layer>
|
979 |
+
<layer id="53" name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" type="Add" version="opset1">
|
980 |
+
<data auto_broadcast="numpy" />
|
981 |
+
<input>
|
982 |
+
<port id="0" precision="FP32">
|
983 |
+
<dim>1</dim>
|
984 |
+
<dim>128</dim>
|
985 |
+
<dim>32</dim>
|
986 |
+
<dim>32</dim>
|
987 |
+
</port>
|
988 |
+
<port id="1" precision="FP32">
|
989 |
+
<dim>1</dim>
|
990 |
+
<dim>128</dim>
|
991 |
+
<dim>32</dim>
|
992 |
+
<dim>32</dim>
|
993 |
+
</port>
|
994 |
+
</input>
|
995 |
+
<output>
|
996 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0">
|
997 |
+
<dim>1</dim>
|
998 |
+
<dim>128</dim>
|
999 |
+
<dim>32</dim>
|
1000 |
+
<dim>32</dim>
|
1001 |
+
</port>
|
1002 |
+
</output>
|
1003 |
+
</layer>
|
1004 |
+
<layer id="54" name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" type="ReLU" version="opset1">
|
1005 |
+
<input>
|
1006 |
+
<port id="0" precision="FP32">
|
1007 |
+
<dim>1</dim>
|
1008 |
+
<dim>128</dim>
|
1009 |
+
<dim>32</dim>
|
1010 |
+
<dim>32</dim>
|
1011 |
+
</port>
|
1012 |
+
</input>
|
1013 |
+
<output>
|
1014 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0">
|
1015 |
+
<dim>1</dim>
|
1016 |
+
<dim>128</dim>
|
1017 |
+
<dim>32</dim>
|
1018 |
+
<dim>32</dim>
|
1019 |
+
</port>
|
1020 |
+
</output>
|
1021 |
+
</layer>
|
1022 |
+
<layer id="55" name="/Shape" type="ShapeOf" version="opset3">
|
1023 |
+
<data output_type="i64" />
|
1024 |
+
<input>
|
1025 |
+
<port id="0" precision="FP32">
|
1026 |
+
<dim>1</dim>
|
1027 |
+
<dim>128</dim>
|
1028 |
+
<dim>32</dim>
|
1029 |
+
<dim>32</dim>
|
1030 |
+
</port>
|
1031 |
+
</input>
|
1032 |
+
<output>
|
1033 |
+
<port id="1" precision="I64" names="/Shape_output_0">
|
1034 |
+
<dim>4</dim>
|
1035 |
+
</port>
|
1036 |
+
</output>
|
1037 |
+
</layer>
|
1038 |
+
<layer id="56" name="/Constant_1" type="Const" version="opset1">
|
1039 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1040 |
+
<output>
|
1041 |
+
<port id="0" precision="I64" names="/Constant_1_output_0">
|
1042 |
+
<dim>1</dim>
|
1043 |
+
</port>
|
1044 |
+
</output>
|
1045 |
+
</layer>
|
1046 |
+
<layer id="57" name="/Constant_2" type="Const" version="opset1">
|
1047 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1048 |
+
<output>
|
1049 |
+
<port id="0" precision="I64" names="/Constant_2_output_0">
|
1050 |
+
<dim>1</dim>
|
1051 |
+
</port>
|
1052 |
+
</output>
|
1053 |
+
</layer>
|
1054 |
+
<layer id="58" name="Broadcast_781" type="Const" version="opset1">
|
1055 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1056 |
+
<output>
|
1057 |
+
<port id="0" precision="I64">
|
1058 |
+
<dim>1</dim>
|
1059 |
+
</port>
|
1060 |
+
</output>
|
1061 |
+
</layer>
|
1062 |
+
<layer id="59" name="/Slice" type="StridedSlice" version="opset1">
|
1063 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1064 |
+
<input>
|
1065 |
+
<port id="0" precision="I64">
|
1066 |
+
<dim>4</dim>
|
1067 |
+
</port>
|
1068 |
+
<port id="1" precision="I64">
|
1069 |
+
<dim>1</dim>
|
1070 |
+
</port>
|
1071 |
+
<port id="2" precision="I64">
|
1072 |
+
<dim>1</dim>
|
1073 |
+
</port>
|
1074 |
+
<port id="3" precision="I64">
|
1075 |
+
<dim>1</dim>
|
1076 |
+
</port>
|
1077 |
+
</input>
|
1078 |
+
<output>
|
1079 |
+
<port id="4" precision="I64" names="/Slice_output_0">
|
1080 |
+
<dim>2</dim>
|
1081 |
+
</port>
|
1082 |
+
</output>
|
1083 |
+
</layer>
|
1084 |
+
<layer id="60" name="/Constant_3" type="Const" version="opset1">
|
1085 |
+
<data element_type="i64" shape="2" offset="2728472" size="16" />
|
1086 |
+
<output>
|
1087 |
+
<port id="0" precision="I64" names="/Constant_3_output_0">
|
1088 |
+
<dim>2</dim>
|
1089 |
+
</port>
|
1090 |
+
</output>
|
1091 |
+
</layer>
|
1092 |
+
<layer id="61" name="/Concat" type="Concat" version="opset1">
|
1093 |
+
<data axis="0" />
|
1094 |
+
<input>
|
1095 |
+
<port id="0" precision="I64">
|
1096 |
+
<dim>2</dim>
|
1097 |
+
</port>
|
1098 |
+
<port id="1" precision="I64">
|
1099 |
+
<dim>2</dim>
|
1100 |
+
</port>
|
1101 |
+
</input>
|
1102 |
+
<output>
|
1103 |
+
<port id="2" precision="I64" names="/Concat_output_0">
|
1104 |
+
<dim>4</dim>
|
1105 |
+
</port>
|
1106 |
+
</output>
|
1107 |
+
</layer>
|
1108 |
+
<layer id="62" name="Convert_804" type="Convert" version="opset1">
|
1109 |
+
<data destination_type="f32" />
|
1110 |
+
<input>
|
1111 |
+
<port id="0" precision="I64">
|
1112 |
+
<dim>4</dim>
|
1113 |
+
</port>
|
1114 |
+
</input>
|
1115 |
+
<output>
|
1116 |
+
<port id="1" precision="FP32">
|
1117 |
+
<dim>4</dim>
|
1118 |
+
</port>
|
1119 |
+
</output>
|
1120 |
+
</layer>
|
1121 |
+
<layer id="63" name="Convert_803" type="Convert" version="opset1">
|
1122 |
+
<data destination_type="f32" />
|
1123 |
+
<input>
|
1124 |
+
<port id="0" precision="I64">
|
1125 |
+
<dim>4</dim>
|
1126 |
+
</port>
|
1127 |
+
</input>
|
1128 |
+
<output>
|
1129 |
+
<port id="1" precision="FP32">
|
1130 |
+
<dim>4</dim>
|
1131 |
+
</port>
|
1132 |
+
</output>
|
1133 |
+
</layer>
|
1134 |
+
<layer id="64" name="Divide_805" type="Divide" version="opset1">
|
1135 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1136 |
+
<input>
|
1137 |
+
<port id="0" precision="FP32">
|
1138 |
+
<dim>4</dim>
|
1139 |
+
</port>
|
1140 |
+
<port id="1" precision="FP32">
|
1141 |
+
<dim>4</dim>
|
1142 |
+
</port>
|
1143 |
+
</input>
|
1144 |
+
<output>
|
1145 |
+
<port id="2" precision="FP32">
|
1146 |
+
<dim>4</dim>
|
1147 |
+
</port>
|
1148 |
+
</output>
|
1149 |
+
</layer>
|
1150 |
+
<layer id="65" name="Constant_6582" type="Const" version="opset1">
|
1151 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1152 |
+
<output>
|
1153 |
+
<port id="0" precision="FP32">
|
1154 |
+
<dim>1</dim>
|
1155 |
+
</port>
|
1156 |
+
</output>
|
1157 |
+
</layer>
|
1158 |
+
<layer id="66" name="Add_807" type="Add" version="opset1">
|
1159 |
+
<data auto_broadcast="numpy" />
|
1160 |
+
<input>
|
1161 |
+
<port id="0" precision="FP32">
|
1162 |
+
<dim>4</dim>
|
1163 |
+
</port>
|
1164 |
+
<port id="1" precision="FP32">
|
1165 |
+
<dim>1</dim>
|
1166 |
+
</port>
|
1167 |
+
</input>
|
1168 |
+
<output>
|
1169 |
+
<port id="2" precision="FP32">
|
1170 |
+
<dim>4</dim>
|
1171 |
+
</port>
|
1172 |
+
</output>
|
1173 |
+
</layer>
|
1174 |
+
<layer id="67" name="/Resize" type="Interpolate" version="opset4">
|
1175 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1176 |
+
<input>
|
1177 |
+
<port id="0" precision="FP32">
|
1178 |
+
<dim>1</dim>
|
1179 |
+
<dim>128</dim>
|
1180 |
+
<dim>32</dim>
|
1181 |
+
<dim>32</dim>
|
1182 |
+
</port>
|
1183 |
+
<port id="1" precision="I64">
|
1184 |
+
<dim>4</dim>
|
1185 |
+
</port>
|
1186 |
+
<port id="2" precision="FP32">
|
1187 |
+
<dim>4</dim>
|
1188 |
+
</port>
|
1189 |
+
</input>
|
1190 |
+
<output>
|
1191 |
+
<port id="3" precision="FP32" names="/Resize_output_0">
|
1192 |
+
<dim>1</dim>
|
1193 |
+
<dim>128</dim>
|
1194 |
+
<dim>64</dim>
|
1195 |
+
<dim>64</dim>
|
1196 |
+
</port>
|
1197 |
+
</output>
|
1198 |
+
</layer>
|
1199 |
+
<layer id="68" name="/Concat_1" type="Concat" version="opset1">
|
1200 |
+
<data axis="1" />
|
1201 |
+
<input>
|
1202 |
+
<port id="0" precision="FP32">
|
1203 |
+
<dim>1</dim>
|
1204 |
+
<dim>64</dim>
|
1205 |
+
<dim>64</dim>
|
1206 |
+
<dim>64</dim>
|
1207 |
+
</port>
|
1208 |
+
<port id="1" precision="FP32">
|
1209 |
+
<dim>1</dim>
|
1210 |
+
<dim>128</dim>
|
1211 |
+
<dim>64</dim>
|
1212 |
+
<dim>64</dim>
|
1213 |
+
</port>
|
1214 |
+
</input>
|
1215 |
+
<output>
|
1216 |
+
<port id="2" precision="FP32" names="/Concat_1_output_0">
|
1217 |
+
<dim>1</dim>
|
1218 |
+
<dim>192</dim>
|
1219 |
+
<dim>64</dim>
|
1220 |
+
<dim>64</dim>
|
1221 |
+
</port>
|
1222 |
+
</output>
|
1223 |
+
</layer>
|
1224 |
+
<layer id="69" name="onnx::Conv_290" type="Const" version="opset1">
|
1225 |
+
<data element_type="f32" shape="256, 128, 3, 3" offset="2728492" size="1179648" />
|
1226 |
+
<output>
|
1227 |
+
<port id="0" precision="FP32" names="onnx::Conv_290">
|
1228 |
+
<dim>256</dim>
|
1229 |
+
<dim>128</dim>
|
1230 |
+
<dim>3</dim>
|
1231 |
+
<dim>3</dim>
|
1232 |
+
</port>
|
1233 |
+
</output>
|
1234 |
+
</layer>
|
1235 |
+
<layer id="70" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1236 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1237 |
+
<input>
|
1238 |
+
<port id="0" precision="FP32">
|
1239 |
+
<dim>1</dim>
|
1240 |
+
<dim>128</dim>
|
1241 |
+
<dim>32</dim>
|
1242 |
+
<dim>32</dim>
|
1243 |
+
</port>
|
1244 |
+
<port id="1" precision="FP32">
|
1245 |
+
<dim>256</dim>
|
1246 |
+
<dim>128</dim>
|
1247 |
+
<dim>3</dim>
|
1248 |
+
<dim>3</dim>
|
1249 |
+
</port>
|
1250 |
+
</input>
|
1251 |
+
<output>
|
1252 |
+
<port id="2" precision="FP32">
|
1253 |
+
<dim>1</dim>
|
1254 |
+
<dim>256</dim>
|
1255 |
+
<dim>16</dim>
|
1256 |
+
<dim>16</dim>
|
1257 |
+
</port>
|
1258 |
+
</output>
|
1259 |
+
</layer>
|
1260 |
+
<layer id="71" name="Reshape_549" type="Const" version="opset1">
|
1261 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="3908140" size="1024" />
|
1262 |
+
<output>
|
1263 |
+
<port id="0" precision="FP32">
|
1264 |
+
<dim>1</dim>
|
1265 |
+
<dim>256</dim>
|
1266 |
+
<dim>1</dim>
|
1267 |
+
<dim>1</dim>
|
1268 |
+
</port>
|
1269 |
+
</output>
|
1270 |
+
</layer>
|
1271 |
+
<layer id="72" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" type="Add" version="opset1">
|
1272 |
+
<data auto_broadcast="numpy" />
|
1273 |
+
<input>
|
1274 |
+
<port id="0" precision="FP32">
|
1275 |
+
<dim>1</dim>
|
1276 |
+
<dim>256</dim>
|
1277 |
+
<dim>16</dim>
|
1278 |
+
<dim>16</dim>
|
1279 |
+
</port>
|
1280 |
+
<port id="1" precision="FP32">
|
1281 |
+
<dim>1</dim>
|
1282 |
+
<dim>256</dim>
|
1283 |
+
<dim>1</dim>
|
1284 |
+
<dim>1</dim>
|
1285 |
+
</port>
|
1286 |
+
</input>
|
1287 |
+
<output>
|
1288 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0">
|
1289 |
+
<dim>1</dim>
|
1290 |
+
<dim>256</dim>
|
1291 |
+
<dim>16</dim>
|
1292 |
+
<dim>16</dim>
|
1293 |
+
</port>
|
1294 |
+
</output>
|
1295 |
+
</layer>
|
1296 |
+
<layer id="73" name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" type="ReLU" version="opset1">
|
1297 |
+
<input>
|
1298 |
+
<port id="0" precision="FP32">
|
1299 |
+
<dim>1</dim>
|
1300 |
+
<dim>256</dim>
|
1301 |
+
<dim>16</dim>
|
1302 |
+
<dim>16</dim>
|
1303 |
+
</port>
|
1304 |
+
</input>
|
1305 |
+
<output>
|
1306 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0">
|
1307 |
+
<dim>1</dim>
|
1308 |
+
<dim>256</dim>
|
1309 |
+
<dim>16</dim>
|
1310 |
+
<dim>16</dim>
|
1311 |
+
</port>
|
1312 |
+
</output>
|
1313 |
+
</layer>
|
1314 |
+
<layer id="74" name="onnx::Conv_293" type="Const" version="opset1">
|
1315 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="3909164" size="2359296" />
|
1316 |
+
<output>
|
1317 |
+
<port id="0" precision="FP32" names="onnx::Conv_293">
|
1318 |
+
<dim>256</dim>
|
1319 |
+
<dim>256</dim>
|
1320 |
+
<dim>3</dim>
|
1321 |
+
<dim>3</dim>
|
1322 |
+
</port>
|
1323 |
+
</output>
|
1324 |
+
</layer>
|
1325 |
+
<layer id="75" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1326 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1327 |
+
<input>
|
1328 |
+
<port id="0" precision="FP32">
|
1329 |
+
<dim>1</dim>
|
1330 |
+
<dim>256</dim>
|
1331 |
+
<dim>16</dim>
|
1332 |
+
<dim>16</dim>
|
1333 |
+
</port>
|
1334 |
+
<port id="1" precision="FP32">
|
1335 |
+
<dim>256</dim>
|
1336 |
+
<dim>256</dim>
|
1337 |
+
<dim>3</dim>
|
1338 |
+
<dim>3</dim>
|
1339 |
+
</port>
|
1340 |
+
</input>
|
1341 |
+
<output>
|
1342 |
+
<port id="2" precision="FP32">
|
1343 |
+
<dim>1</dim>
|
1344 |
+
<dim>256</dim>
|
1345 |
+
<dim>16</dim>
|
1346 |
+
<dim>16</dim>
|
1347 |
+
</port>
|
1348 |
+
</output>
|
1349 |
+
</layer>
|
1350 |
+
<layer id="76" name="Reshape_598" type="Const" version="opset1">
|
1351 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6268460" size="1024" />
|
1352 |
+
<output>
|
1353 |
+
<port id="0" precision="FP32">
|
1354 |
+
<dim>1</dim>
|
1355 |
+
<dim>256</dim>
|
1356 |
+
<dim>1</dim>
|
1357 |
+
<dim>1</dim>
|
1358 |
+
</port>
|
1359 |
+
</output>
|
1360 |
+
</layer>
|
1361 |
+
<layer id="77" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" type="Add" version="opset1">
|
1362 |
+
<data auto_broadcast="numpy" />
|
1363 |
+
<input>
|
1364 |
+
<port id="0" precision="FP32">
|
1365 |
+
<dim>1</dim>
|
1366 |
+
<dim>256</dim>
|
1367 |
+
<dim>16</dim>
|
1368 |
+
<dim>16</dim>
|
1369 |
+
</port>
|
1370 |
+
<port id="1" precision="FP32">
|
1371 |
+
<dim>1</dim>
|
1372 |
+
<dim>256</dim>
|
1373 |
+
<dim>1</dim>
|
1374 |
+
<dim>1</dim>
|
1375 |
+
</port>
|
1376 |
+
</input>
|
1377 |
+
<output>
|
1378 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0">
|
1379 |
+
<dim>1</dim>
|
1380 |
+
<dim>256</dim>
|
1381 |
+
<dim>16</dim>
|
1382 |
+
<dim>16</dim>
|
1383 |
+
</port>
|
1384 |
+
</output>
|
1385 |
+
</layer>
|
1386 |
+
<layer id="78" name="onnx::Conv_296" type="Const" version="opset1">
|
1387 |
+
<data element_type="f32" shape="256, 128, 1, 1" offset="6269484" size="131072" />
|
1388 |
+
<output>
|
1389 |
+
<port id="0" precision="FP32" names="onnx::Conv_296">
|
1390 |
+
<dim>256</dim>
|
1391 |
+
<dim>128</dim>
|
1392 |
+
<dim>1</dim>
|
1393 |
+
<dim>1</dim>
|
1394 |
+
</port>
|
1395 |
+
</output>
|
1396 |
+
</layer>
|
1397 |
+
<layer id="79" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1398 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
1399 |
+
<input>
|
1400 |
+
<port id="0" precision="FP32">
|
1401 |
+
<dim>1</dim>
|
1402 |
+
<dim>128</dim>
|
1403 |
+
<dim>32</dim>
|
1404 |
+
<dim>32</dim>
|
1405 |
+
</port>
|
1406 |
+
<port id="1" precision="FP32">
|
1407 |
+
<dim>256</dim>
|
1408 |
+
<dim>128</dim>
|
1409 |
+
<dim>1</dim>
|
1410 |
+
<dim>1</dim>
|
1411 |
+
</port>
|
1412 |
+
</input>
|
1413 |
+
<output>
|
1414 |
+
<port id="2" precision="FP32">
|
1415 |
+
<dim>1</dim>
|
1416 |
+
<dim>256</dim>
|
1417 |
+
<dim>16</dim>
|
1418 |
+
<dim>16</dim>
|
1419 |
+
</port>
|
1420 |
+
</output>
|
1421 |
+
</layer>
|
1422 |
+
<layer id="80" name="Reshape_646" type="Const" version="opset1">
|
1423 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6400556" size="1024" />
|
1424 |
+
<output>
|
1425 |
+
<port id="0" precision="FP32">
|
1426 |
+
<dim>1</dim>
|
1427 |
+
<dim>256</dim>
|
1428 |
+
<dim>1</dim>
|
1429 |
+
<dim>1</dim>
|
1430 |
+
</port>
|
1431 |
+
</output>
|
1432 |
+
</layer>
|
1433 |
+
<layer id="81" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
1434 |
+
<data auto_broadcast="numpy" />
|
1435 |
+
<input>
|
1436 |
+
<port id="0" precision="FP32">
|
1437 |
+
<dim>1</dim>
|
1438 |
+
<dim>256</dim>
|
1439 |
+
<dim>16</dim>
|
1440 |
+
<dim>16</dim>
|
1441 |
+
</port>
|
1442 |
+
<port id="1" precision="FP32">
|
1443 |
+
<dim>1</dim>
|
1444 |
+
<dim>256</dim>
|
1445 |
+
<dim>1</dim>
|
1446 |
+
<dim>1</dim>
|
1447 |
+
</port>
|
1448 |
+
</input>
|
1449 |
+
<output>
|
1450 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0">
|
1451 |
+
<dim>1</dim>
|
1452 |
+
<dim>256</dim>
|
1453 |
+
<dim>16</dim>
|
1454 |
+
<dim>16</dim>
|
1455 |
+
</port>
|
1456 |
+
</output>
|
1457 |
+
</layer>
|
1458 |
+
<layer id="82" name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" type="Add" version="opset1">
|
1459 |
+
<data auto_broadcast="numpy" />
|
1460 |
+
<input>
|
1461 |
+
<port id="0" precision="FP32">
|
1462 |
+
<dim>1</dim>
|
1463 |
+
<dim>256</dim>
|
1464 |
+
<dim>16</dim>
|
1465 |
+
<dim>16</dim>
|
1466 |
+
</port>
|
1467 |
+
<port id="1" precision="FP32">
|
1468 |
+
<dim>1</dim>
|
1469 |
+
<dim>256</dim>
|
1470 |
+
<dim>16</dim>
|
1471 |
+
<dim>16</dim>
|
1472 |
+
</port>
|
1473 |
+
</input>
|
1474 |
+
<output>
|
1475 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0">
|
1476 |
+
<dim>1</dim>
|
1477 |
+
<dim>256</dim>
|
1478 |
+
<dim>16</dim>
|
1479 |
+
<dim>16</dim>
|
1480 |
+
</port>
|
1481 |
+
</output>
|
1482 |
+
</layer>
|
1483 |
+
<layer id="83" name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" type="ReLU" version="opset1">
|
1484 |
+
<input>
|
1485 |
+
<port id="0" precision="FP32">
|
1486 |
+
<dim>1</dim>
|
1487 |
+
<dim>256</dim>
|
1488 |
+
<dim>16</dim>
|
1489 |
+
<dim>16</dim>
|
1490 |
+
</port>
|
1491 |
+
</input>
|
1492 |
+
<output>
|
1493 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0">
|
1494 |
+
<dim>1</dim>
|
1495 |
+
<dim>256</dim>
|
1496 |
+
<dim>16</dim>
|
1497 |
+
<dim>16</dim>
|
1498 |
+
</port>
|
1499 |
+
</output>
|
1500 |
+
</layer>
|
1501 |
+
<layer id="84" name="onnx::Conv_299" type="Const" version="opset1">
|
1502 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="6401580" size="2359296" />
|
1503 |
+
<output>
|
1504 |
+
<port id="0" precision="FP32" names="onnx::Conv_299">
|
1505 |
+
<dim>256</dim>
|
1506 |
+
<dim>256</dim>
|
1507 |
+
<dim>3</dim>
|
1508 |
+
<dim>3</dim>
|
1509 |
+
</port>
|
1510 |
+
</output>
|
1511 |
+
</layer>
|
1512 |
+
<layer id="85" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1513 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1514 |
+
<input>
|
1515 |
+
<port id="0" precision="FP32">
|
1516 |
+
<dim>1</dim>
|
1517 |
+
<dim>256</dim>
|
1518 |
+
<dim>16</dim>
|
1519 |
+
<dim>16</dim>
|
1520 |
+
</port>
|
1521 |
+
<port id="1" precision="FP32">
|
1522 |
+
<dim>256</dim>
|
1523 |
+
<dim>256</dim>
|
1524 |
+
<dim>3</dim>
|
1525 |
+
<dim>3</dim>
|
1526 |
+
</port>
|
1527 |
+
</input>
|
1528 |
+
<output>
|
1529 |
+
<port id="2" precision="FP32">
|
1530 |
+
<dim>1</dim>
|
1531 |
+
<dim>256</dim>
|
1532 |
+
<dim>16</dim>
|
1533 |
+
<dim>16</dim>
|
1534 |
+
</port>
|
1535 |
+
</output>
|
1536 |
+
</layer>
|
1537 |
+
<layer id="86" name="Reshape_696" type="Const" version="opset1">
|
1538 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="8760876" size="1024" />
|
1539 |
+
<output>
|
1540 |
+
<port id="0" precision="FP32">
|
1541 |
+
<dim>1</dim>
|
1542 |
+
<dim>256</dim>
|
1543 |
+
<dim>1</dim>
|
1544 |
+
<dim>1</dim>
|
1545 |
+
</port>
|
1546 |
+
</output>
|
1547 |
+
</layer>
|
1548 |
+
<layer id="87" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" type="Add" version="opset1">
|
1549 |
+
<data auto_broadcast="numpy" />
|
1550 |
+
<input>
|
1551 |
+
<port id="0" precision="FP32">
|
1552 |
+
<dim>1</dim>
|
1553 |
+
<dim>256</dim>
|
1554 |
+
<dim>16</dim>
|
1555 |
+
<dim>16</dim>
|
1556 |
+
</port>
|
1557 |
+
<port id="1" precision="FP32">
|
1558 |
+
<dim>1</dim>
|
1559 |
+
<dim>256</dim>
|
1560 |
+
<dim>1</dim>
|
1561 |
+
<dim>1</dim>
|
1562 |
+
</port>
|
1563 |
+
</input>
|
1564 |
+
<output>
|
1565 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0">
|
1566 |
+
<dim>1</dim>
|
1567 |
+
<dim>256</dim>
|
1568 |
+
<dim>16</dim>
|
1569 |
+
<dim>16</dim>
|
1570 |
+
</port>
|
1571 |
+
</output>
|
1572 |
+
</layer>
|
1573 |
+
<layer id="88" name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" type="ReLU" version="opset1">
|
1574 |
+
<input>
|
1575 |
+
<port id="0" precision="FP32">
|
1576 |
+
<dim>1</dim>
|
1577 |
+
<dim>256</dim>
|
1578 |
+
<dim>16</dim>
|
1579 |
+
<dim>16</dim>
|
1580 |
+
</port>
|
1581 |
+
</input>
|
1582 |
+
<output>
|
1583 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0">
|
1584 |
+
<dim>1</dim>
|
1585 |
+
<dim>256</dim>
|
1586 |
+
<dim>16</dim>
|
1587 |
+
<dim>16</dim>
|
1588 |
+
</port>
|
1589 |
+
</output>
|
1590 |
+
</layer>
|
1591 |
+
<layer id="89" name="onnx::Conv_302" type="Const" version="opset1">
|
1592 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="8761900" size="2359296" />
|
1593 |
+
<output>
|
1594 |
+
<port id="0" precision="FP32" names="onnx::Conv_302">
|
1595 |
+
<dim>256</dim>
|
1596 |
+
<dim>256</dim>
|
1597 |
+
<dim>3</dim>
|
1598 |
+
<dim>3</dim>
|
1599 |
+
</port>
|
1600 |
+
</output>
|
1601 |
+
</layer>
|
1602 |
+
<layer id="90" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1603 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1604 |
+
<input>
|
1605 |
+
<port id="0" precision="FP32">
|
1606 |
+
<dim>1</dim>
|
1607 |
+
<dim>256</dim>
|
1608 |
+
<dim>16</dim>
|
1609 |
+
<dim>16</dim>
|
1610 |
+
</port>
|
1611 |
+
<port id="1" precision="FP32">
|
1612 |
+
<dim>256</dim>
|
1613 |
+
<dim>256</dim>
|
1614 |
+
<dim>3</dim>
|
1615 |
+
<dim>3</dim>
|
1616 |
+
</port>
|
1617 |
+
</input>
|
1618 |
+
<output>
|
1619 |
+
<port id="2" precision="FP32">
|
1620 |
+
<dim>1</dim>
|
1621 |
+
<dim>256</dim>
|
1622 |
+
<dim>16</dim>
|
1623 |
+
<dim>16</dim>
|
1624 |
+
</port>
|
1625 |
+
</output>
|
1626 |
+
</layer>
|
1627 |
+
<layer id="91" name="Reshape_745" type="Const" version="opset1">
|
1628 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="11121196" size="1024" />
|
1629 |
+
<output>
|
1630 |
+
<port id="0" precision="FP32">
|
1631 |
+
<dim>1</dim>
|
1632 |
+
<dim>256</dim>
|
1633 |
+
<dim>1</dim>
|
1634 |
+
<dim>1</dim>
|
1635 |
+
</port>
|
1636 |
+
</output>
|
1637 |
+
</layer>
|
1638 |
+
<layer id="92" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" type="Add" version="opset1">
|
1639 |
+
<data auto_broadcast="numpy" />
|
1640 |
+
<input>
|
1641 |
+
<port id="0" precision="FP32">
|
1642 |
+
<dim>1</dim>
|
1643 |
+
<dim>256</dim>
|
1644 |
+
<dim>16</dim>
|
1645 |
+
<dim>16</dim>
|
1646 |
+
</port>
|
1647 |
+
<port id="1" precision="FP32">
|
1648 |
+
<dim>1</dim>
|
1649 |
+
<dim>256</dim>
|
1650 |
+
<dim>1</dim>
|
1651 |
+
<dim>1</dim>
|
1652 |
+
</port>
|
1653 |
+
</input>
|
1654 |
+
<output>
|
1655 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0">
|
1656 |
+
<dim>1</dim>
|
1657 |
+
<dim>256</dim>
|
1658 |
+
<dim>16</dim>
|
1659 |
+
<dim>16</dim>
|
1660 |
+
</port>
|
1661 |
+
</output>
|
1662 |
+
</layer>
|
1663 |
+
<layer id="93" name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" type="Add" version="opset1">
|
1664 |
+
<data auto_broadcast="numpy" />
|
1665 |
+
<input>
|
1666 |
+
<port id="0" precision="FP32">
|
1667 |
+
<dim>1</dim>
|
1668 |
+
<dim>256</dim>
|
1669 |
+
<dim>16</dim>
|
1670 |
+
<dim>16</dim>
|
1671 |
+
</port>
|
1672 |
+
<port id="1" precision="FP32">
|
1673 |
+
<dim>1</dim>
|
1674 |
+
<dim>256</dim>
|
1675 |
+
<dim>16</dim>
|
1676 |
+
<dim>16</dim>
|
1677 |
+
</port>
|
1678 |
+
</input>
|
1679 |
+
<output>
|
1680 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0">
|
1681 |
+
<dim>1</dim>
|
1682 |
+
<dim>256</dim>
|
1683 |
+
<dim>16</dim>
|
1684 |
+
<dim>16</dim>
|
1685 |
+
</port>
|
1686 |
+
</output>
|
1687 |
+
</layer>
|
1688 |
+
<layer id="94" name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" type="ReLU" version="opset1">
|
1689 |
+
<input>
|
1690 |
+
<port id="0" precision="FP32">
|
1691 |
+
<dim>1</dim>
|
1692 |
+
<dim>256</dim>
|
1693 |
+
<dim>16</dim>
|
1694 |
+
<dim>16</dim>
|
1695 |
+
</port>
|
1696 |
+
</input>
|
1697 |
+
<output>
|
1698 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0">
|
1699 |
+
<dim>1</dim>
|
1700 |
+
<dim>256</dim>
|
1701 |
+
<dim>16</dim>
|
1702 |
+
<dim>16</dim>
|
1703 |
+
</port>
|
1704 |
+
</output>
|
1705 |
+
</layer>
|
1706 |
+
<layer id="95" name="/Shape_3" type="ShapeOf" version="opset3">
|
1707 |
+
<data output_type="i64" />
|
1708 |
+
<input>
|
1709 |
+
<port id="0" precision="FP32">
|
1710 |
+
<dim>1</dim>
|
1711 |
+
<dim>256</dim>
|
1712 |
+
<dim>16</dim>
|
1713 |
+
<dim>16</dim>
|
1714 |
+
</port>
|
1715 |
+
</input>
|
1716 |
+
<output>
|
1717 |
+
<port id="1" precision="I64" names="/Shape_3_output_0">
|
1718 |
+
<dim>4</dim>
|
1719 |
+
</port>
|
1720 |
+
</output>
|
1721 |
+
</layer>
|
1722 |
+
<layer id="96" name="/Constant_9" type="Const" version="opset1">
|
1723 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1724 |
+
<output>
|
1725 |
+
<port id="0" precision="I64" names="/Constant_9_output_0">
|
1726 |
+
<dim>1</dim>
|
1727 |
+
</port>
|
1728 |
+
</output>
|
1729 |
+
</layer>
|
1730 |
+
<layer id="97" name="/Constant_10" type="Const" version="opset1">
|
1731 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1732 |
+
<output>
|
1733 |
+
<port id="0" precision="I64" names="/Constant_10_output_0">
|
1734 |
+
<dim>1</dim>
|
1735 |
+
</port>
|
1736 |
+
</output>
|
1737 |
+
</layer>
|
1738 |
+
<layer id="98" name="Broadcast_861" type="Const" version="opset1">
|
1739 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1740 |
+
<output>
|
1741 |
+
<port id="0" precision="I64">
|
1742 |
+
<dim>1</dim>
|
1743 |
+
</port>
|
1744 |
+
</output>
|
1745 |
+
</layer>
|
1746 |
+
<layer id="99" name="/Slice_1" type="StridedSlice" version="opset1">
|
1747 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1748 |
+
<input>
|
1749 |
+
<port id="0" precision="I64">
|
1750 |
+
<dim>4</dim>
|
1751 |
+
</port>
|
1752 |
+
<port id="1" precision="I64">
|
1753 |
+
<dim>1</dim>
|
1754 |
+
</port>
|
1755 |
+
<port id="2" precision="I64">
|
1756 |
+
<dim>1</dim>
|
1757 |
+
</port>
|
1758 |
+
<port id="3" precision="I64">
|
1759 |
+
<dim>1</dim>
|
1760 |
+
</port>
|
1761 |
+
</input>
|
1762 |
+
<output>
|
1763 |
+
<port id="4" precision="I64" names="/Slice_1_output_0">
|
1764 |
+
<dim>2</dim>
|
1765 |
+
</port>
|
1766 |
+
</output>
|
1767 |
+
</layer>
|
1768 |
+
<layer id="100" name="/Shape_1" type="ShapeOf" version="opset3">
|
1769 |
+
<data output_type="i64" />
|
1770 |
+
<input>
|
1771 |
+
<port id="0" precision="FP32">
|
1772 |
+
<dim>1</dim>
|
1773 |
+
<dim>192</dim>
|
1774 |
+
<dim>64</dim>
|
1775 |
+
<dim>64</dim>
|
1776 |
+
</port>
|
1777 |
+
</input>
|
1778 |
+
<output>
|
1779 |
+
<port id="1" precision="I64" names="/Shape_1_output_0,/Shape_2_output_0">
|
1780 |
+
<dim>4</dim>
|
1781 |
+
</port>
|
1782 |
+
</output>
|
1783 |
+
</layer>
|
1784 |
+
<layer id="101" name="Constant_6090" type="Const" version="opset1">
|
1785 |
+
<data element_type="i64" shape="2" offset="11122220" size="16" />
|
1786 |
+
<output>
|
1787 |
+
<port id="0" precision="I64">
|
1788 |
+
<dim>2</dim>
|
1789 |
+
</port>
|
1790 |
+
</output>
|
1791 |
+
</layer>
|
1792 |
+
<layer id="102" name="Constant_6091" type="Const" version="opset1">
|
1793 |
+
<data element_type="i64" shape="" offset="2728448" size="8" />
|
1794 |
+
<output>
|
1795 |
+
<port id="0" precision="I64" />
|
1796 |
+
</output>
|
1797 |
+
</layer>
|
1798 |
+
<layer id="103" name="Gather_6092" type="Gather" version="opset8">
|
1799 |
+
<data batch_dims="0" />
|
1800 |
+
<input>
|
1801 |
+
<port id="0" precision="I64">
|
1802 |
+
<dim>4</dim>
|
1803 |
+
</port>
|
1804 |
+
<port id="1" precision="I64">
|
1805 |
+
<dim>2</dim>
|
1806 |
+
</port>
|
1807 |
+
<port id="2" precision="I64" />
|
1808 |
+
</input>
|
1809 |
+
<output>
|
1810 |
+
<port id="3" precision="I64" names="/Cast_output_0,/Concat_2_output_0">
|
1811 |
+
<dim>2</dim>
|
1812 |
+
</port>
|
1813 |
+
</output>
|
1814 |
+
</layer>
|
1815 |
+
<layer id="104" name="/Concat_3" type="Concat" version="opset1">
|
1816 |
+
<data axis="0" />
|
1817 |
+
<input>
|
1818 |
+
<port id="0" precision="I64">
|
1819 |
+
<dim>2</dim>
|
1820 |
+
</port>
|
1821 |
+
<port id="1" precision="I64">
|
1822 |
+
<dim>2</dim>
|
1823 |
+
</port>
|
1824 |
+
</input>
|
1825 |
+
<output>
|
1826 |
+
<port id="2" precision="I64" names="/Concat_3_output_0">
|
1827 |
+
<dim>4</dim>
|
1828 |
+
</port>
|
1829 |
+
</output>
|
1830 |
+
</layer>
|
1831 |
+
<layer id="105" name="Convert_884" type="Convert" version="opset1">
|
1832 |
+
<data destination_type="f32" />
|
1833 |
+
<input>
|
1834 |
+
<port id="0" precision="I64">
|
1835 |
+
<dim>4</dim>
|
1836 |
+
</port>
|
1837 |
+
</input>
|
1838 |
+
<output>
|
1839 |
+
<port id="1" precision="FP32">
|
1840 |
+
<dim>4</dim>
|
1841 |
+
</port>
|
1842 |
+
</output>
|
1843 |
+
</layer>
|
1844 |
+
<layer id="106" name="Convert_883" type="Convert" version="opset1">
|
1845 |
+
<data destination_type="f32" />
|
1846 |
+
<input>
|
1847 |
+
<port id="0" precision="I64">
|
1848 |
+
<dim>4</dim>
|
1849 |
+
</port>
|
1850 |
+
</input>
|
1851 |
+
<output>
|
1852 |
+
<port id="1" precision="FP32">
|
1853 |
+
<dim>4</dim>
|
1854 |
+
</port>
|
1855 |
+
</output>
|
1856 |
+
</layer>
|
1857 |
+
<layer id="107" name="Divide_885" type="Divide" version="opset1">
|
1858 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1859 |
+
<input>
|
1860 |
+
<port id="0" precision="FP32">
|
1861 |
+
<dim>4</dim>
|
1862 |
+
</port>
|
1863 |
+
<port id="1" precision="FP32">
|
1864 |
+
<dim>4</dim>
|
1865 |
+
</port>
|
1866 |
+
</input>
|
1867 |
+
<output>
|
1868 |
+
<port id="2" precision="FP32">
|
1869 |
+
<dim>4</dim>
|
1870 |
+
</port>
|
1871 |
+
</output>
|
1872 |
+
</layer>
|
1873 |
+
<layer id="108" name="Constant_6583" type="Const" version="opset1">
|
1874 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1875 |
+
<output>
|
1876 |
+
<port id="0" precision="FP32">
|
1877 |
+
<dim>1</dim>
|
1878 |
+
</port>
|
1879 |
+
</output>
|
1880 |
+
</layer>
|
1881 |
+
<layer id="109" name="Add_887" type="Add" version="opset1">
|
1882 |
+
<data auto_broadcast="numpy" />
|
1883 |
+
<input>
|
1884 |
+
<port id="0" precision="FP32">
|
1885 |
+
<dim>4</dim>
|
1886 |
+
</port>
|
1887 |
+
<port id="1" precision="FP32">
|
1888 |
+
<dim>1</dim>
|
1889 |
+
</port>
|
1890 |
+
</input>
|
1891 |
+
<output>
|
1892 |
+
<port id="2" precision="FP32">
|
1893 |
+
<dim>4</dim>
|
1894 |
+
</port>
|
1895 |
+
</output>
|
1896 |
+
</layer>
|
1897 |
+
<layer id="110" name="/Resize_1" type="Interpolate" version="opset4">
|
1898 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1899 |
+
<input>
|
1900 |
+
<port id="0" precision="FP32">
|
1901 |
+
<dim>1</dim>
|
1902 |
+
<dim>256</dim>
|
1903 |
+
<dim>16</dim>
|
1904 |
+
<dim>16</dim>
|
1905 |
+
</port>
|
1906 |
+
<port id="1" precision="I64">
|
1907 |
+
<dim>4</dim>
|
1908 |
+
</port>
|
1909 |
+
<port id="2" precision="FP32">
|
1910 |
+
<dim>4</dim>
|
1911 |
+
</port>
|
1912 |
+
</input>
|
1913 |
+
<output>
|
1914 |
+
<port id="3" precision="FP32" names="/Resize_1_output_0">
|
1915 |
+
<dim>1</dim>
|
1916 |
+
<dim>256</dim>
|
1917 |
+
<dim>64</dim>
|
1918 |
+
<dim>64</dim>
|
1919 |
+
</port>
|
1920 |
+
</output>
|
1921 |
+
</layer>
|
1922 |
+
<layer id="111" name="/Concat_4" type="Concat" version="opset1">
|
1923 |
+
<data axis="1" />
|
1924 |
+
<input>
|
1925 |
+
<port id="0" precision="FP32">
|
1926 |
+
<dim>1</dim>
|
1927 |
+
<dim>192</dim>
|
1928 |
+
<dim>64</dim>
|
1929 |
+
<dim>64</dim>
|
1930 |
+
</port>
|
1931 |
+
<port id="1" precision="FP32">
|
1932 |
+
<dim>1</dim>
|
1933 |
+
<dim>256</dim>
|
1934 |
+
<dim>64</dim>
|
1935 |
+
<dim>64</dim>
|
1936 |
+
</port>
|
1937 |
+
</input>
|
1938 |
+
<output>
|
1939 |
+
<port id="2" precision="FP32" names="/Concat_4_output_0">
|
1940 |
+
<dim>1</dim>
|
1941 |
+
<dim>448</dim>
|
1942 |
+
<dim>64</dim>
|
1943 |
+
<dim>64</dim>
|
1944 |
+
</port>
|
1945 |
+
</output>
|
1946 |
+
</layer>
|
1947 |
+
<layer id="112" name="onnx::Gather_308" type="Const" version="opset1">
|
1948 |
+
<data element_type="i64" shape="100" offset="11122236" size="800" />
|
1949 |
+
<output>
|
1950 |
+
<port id="0" precision="I64" names="onnx::Gather_308">
|
1951 |
+
<dim>100</dim>
|
1952 |
+
</port>
|
1953 |
+
</output>
|
1954 |
+
</layer>
|
1955 |
+
<layer id="113" name="Constant_965" type="Const" version="opset1">
|
1956 |
+
<data element_type="i64" shape="" offset="2728464" size="8" />
|
1957 |
+
<output>
|
1958 |
+
<port id="0" precision="I64" />
|
1959 |
+
</output>
|
1960 |
+
</layer>
|
1961 |
+
<layer id="114" name="/Gather_2" type="Gather" version="opset8">
|
1962 |
+
<data batch_dims="0" />
|
1963 |
+
<input>
|
1964 |
+
<port id="0" precision="FP32">
|
1965 |
+
<dim>1</dim>
|
1966 |
+
<dim>448</dim>
|
1967 |
+
<dim>64</dim>
|
1968 |
+
<dim>64</dim>
|
1969 |
+
</port>
|
1970 |
+
<port id="1" precision="I64">
|
1971 |
+
<dim>100</dim>
|
1972 |
+
</port>
|
1973 |
+
<port id="2" precision="I64" />
|
1974 |
+
</input>
|
1975 |
+
<output>
|
1976 |
+
<port id="3" precision="FP32" names="/Gather_2_output_0">
|
1977 |
+
<dim>1</dim>
|
1978 |
+
<dim>100</dim>
|
1979 |
+
<dim>64</dim>
|
1980 |
+
<dim>64</dim>
|
1981 |
+
</port>
|
1982 |
+
</output>
|
1983 |
+
</layer>
|
1984 |
+
<layer id="115" name="/anomaly_map_generator/Constant" type="Const" version="opset1">
|
1985 |
+
<data element_type="i64" shape="3" offset="11123036" size="24" />
|
1986 |
+
<output>
|
1987 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_output_0">
|
1988 |
+
<dim>3</dim>
|
1989 |
+
</port>
|
1990 |
+
</output>
|
1991 |
+
</layer>
|
1992 |
+
<layer id="116" name="/anomaly_map_generator/Reshape" type="Reshape" version="opset1">
|
1993 |
+
<data special_zero="true" />
|
1994 |
+
<input>
|
1995 |
+
<port id="0" precision="FP32">
|
1996 |
+
<dim>1</dim>
|
1997 |
+
<dim>100</dim>
|
1998 |
+
<dim>64</dim>
|
1999 |
+
<dim>64</dim>
|
2000 |
+
</port>
|
2001 |
+
<port id="1" precision="I64">
|
2002 |
+
<dim>3</dim>
|
2003 |
+
</port>
|
2004 |
+
</input>
|
2005 |
+
<output>
|
2006 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_output_0">
|
2007 |
+
<dim>1</dim>
|
2008 |
+
<dim>100</dim>
|
2009 |
+
<dim>4096</dim>
|
2010 |
+
</port>
|
2011 |
+
</output>
|
2012 |
+
</layer>
|
2013 |
+
<layer id="117" name="Constant_6584" type="Const" version="opset1">
|
2014 |
+
<data element_type="f32" shape="1, 100, 4096" offset="11123060" size="1638400" />
|
2015 |
+
<output>
|
2016 |
+
<port id="0" precision="FP32">
|
2017 |
+
<dim>1</dim>
|
2018 |
+
<dim>100</dim>
|
2019 |
+
<dim>4096</dim>
|
2020 |
+
</port>
|
2021 |
+
</output>
|
2022 |
+
</layer>
|
2023 |
+
<layer id="118" name="/anomaly_map_generator/Sub" type="Subtract" version="opset1">
|
2024 |
+
<data auto_broadcast="numpy" />
|
2025 |
+
<input>
|
2026 |
+
<port id="0" precision="FP32">
|
2027 |
+
<dim>1</dim>
|
2028 |
+
<dim>100</dim>
|
2029 |
+
<dim>4096</dim>
|
2030 |
+
</port>
|
2031 |
+
<port id="1" precision="FP32">
|
2032 |
+
<dim>1</dim>
|
2033 |
+
<dim>100</dim>
|
2034 |
+
<dim>4096</dim>
|
2035 |
+
</port>
|
2036 |
+
</input>
|
2037 |
+
<output>
|
2038 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Sub_output_0">
|
2039 |
+
<dim>1</dim>
|
2040 |
+
<dim>100</dim>
|
2041 |
+
<dim>4096</dim>
|
2042 |
+
</port>
|
2043 |
+
</output>
|
2044 |
+
</layer>
|
2045 |
+
<layer id="119" name="Constant_975" type="Const" version="opset1">
|
2046 |
+
<data element_type="i64" shape="3" offset="12761460" size="24" />
|
2047 |
+
<output>
|
2048 |
+
<port id="0" precision="I64">
|
2049 |
+
<dim>3</dim>
|
2050 |
+
</port>
|
2051 |
+
</output>
|
2052 |
+
</layer>
|
2053 |
+
<layer id="120" name="/anomaly_map_generator/Transpose" type="Transpose" version="opset1">
|
2054 |
+
<input>
|
2055 |
+
<port id="0" precision="FP32">
|
2056 |
+
<dim>1</dim>
|
2057 |
+
<dim>100</dim>
|
2058 |
+
<dim>4096</dim>
|
2059 |
+
</port>
|
2060 |
+
<port id="1" precision="I64">
|
2061 |
+
<dim>3</dim>
|
2062 |
+
</port>
|
2063 |
+
</input>
|
2064 |
+
<output>
|
2065 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Transpose_output_0">
|
2066 |
+
<dim>4096</dim>
|
2067 |
+
<dim>1</dim>
|
2068 |
+
<dim>100</dim>
|
2069 |
+
</port>
|
2070 |
+
</output>
|
2071 |
+
</layer>
|
2072 |
+
<layer id="121" name="onnx::MatMul_310" type="Const" version="opset1">
|
2073 |
+
<data element_type="f32" shape="4096, 100, 100" offset="12761484" size="163840000" />
|
2074 |
+
<output>
|
2075 |
+
<port id="0" precision="FP32" names="onnx::MatMul_310">
|
2076 |
+
<dim>4096</dim>
|
2077 |
+
<dim>100</dim>
|
2078 |
+
<dim>100</dim>
|
2079 |
+
</port>
|
2080 |
+
</output>
|
2081 |
+
</layer>
|
2082 |
+
<layer id="122" name="/anomaly_map_generator/MatMul" type="MatMul" version="opset1">
|
2083 |
+
<data transpose_a="false" transpose_b="false" />
|
2084 |
+
<input>
|
2085 |
+
<port id="0" precision="FP32">
|
2086 |
+
<dim>4096</dim>
|
2087 |
+
<dim>1</dim>
|
2088 |
+
<dim>100</dim>
|
2089 |
+
</port>
|
2090 |
+
<port id="1" precision="FP32">
|
2091 |
+
<dim>4096</dim>
|
2092 |
+
<dim>100</dim>
|
2093 |
+
<dim>100</dim>
|
2094 |
+
</port>
|
2095 |
+
</input>
|
2096 |
+
<output>
|
2097 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/MatMul_output_0">
|
2098 |
+
<dim>4096</dim>
|
2099 |
+
<dim>1</dim>
|
2100 |
+
<dim>100</dim>
|
2101 |
+
</port>
|
2102 |
+
</output>
|
2103 |
+
</layer>
|
2104 |
+
<layer id="123" name="/anomaly_map_generator/Mul" type="Multiply" version="opset1">
|
2105 |
+
<data auto_broadcast="numpy" />
|
2106 |
+
<input>
|
2107 |
+
<port id="0" precision="FP32">
|
2108 |
+
<dim>4096</dim>
|
2109 |
+
<dim>1</dim>
|
2110 |
+
<dim>100</dim>
|
2111 |
+
</port>
|
2112 |
+
<port id="1" precision="FP32">
|
2113 |
+
<dim>4096</dim>
|
2114 |
+
<dim>1</dim>
|
2115 |
+
<dim>100</dim>
|
2116 |
+
</port>
|
2117 |
+
</input>
|
2118 |
+
<output>
|
2119 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Mul_output_0">
|
2120 |
+
<dim>4096</dim>
|
2121 |
+
<dim>1</dim>
|
2122 |
+
<dim>100</dim>
|
2123 |
+
</port>
|
2124 |
+
</output>
|
2125 |
+
</layer>
|
2126 |
+
<layer id="124" name="Constant_979" type="Const" version="opset1">
|
2127 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2128 |
+
<output>
|
2129 |
+
<port id="0" precision="I64">
|
2130 |
+
<dim>1</dim>
|
2131 |
+
</port>
|
2132 |
+
</output>
|
2133 |
+
</layer>
|
2134 |
+
<layer id="125" name="/anomaly_map_generator/ReduceSum" type="ReduceSum" version="opset1">
|
2135 |
+
<data keep_dims="false" />
|
2136 |
+
<input>
|
2137 |
+
<port id="0" precision="FP32">
|
2138 |
+
<dim>4096</dim>
|
2139 |
+
<dim>1</dim>
|
2140 |
+
<dim>100</dim>
|
2141 |
+
</port>
|
2142 |
+
<port id="1" precision="I64">
|
2143 |
+
<dim>1</dim>
|
2144 |
+
</port>
|
2145 |
+
</input>
|
2146 |
+
<output>
|
2147 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/ReduceSum_output_0">
|
2148 |
+
<dim>4096</dim>
|
2149 |
+
<dim>1</dim>
|
2150 |
+
</port>
|
2151 |
+
</output>
|
2152 |
+
</layer>
|
2153 |
+
<layer id="126" name="/anomaly_map_generator/Constant_1" type="Const" version="opset1">
|
2154 |
+
<data element_type="i64" shape="4" offset="176601484" size="32" />
|
2155 |
+
<output>
|
2156 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_1_output_0">
|
2157 |
+
<dim>4</dim>
|
2158 |
+
</port>
|
2159 |
+
</output>
|
2160 |
+
</layer>
|
2161 |
+
<layer id="127" name="/anomaly_map_generator/Reshape_1" type="Reshape" version="opset1">
|
2162 |
+
<data special_zero="true" />
|
2163 |
+
<input>
|
2164 |
+
<port id="0" precision="FP32">
|
2165 |
+
<dim>4096</dim>
|
2166 |
+
<dim>1</dim>
|
2167 |
+
</port>
|
2168 |
+
<port id="1" precision="I64">
|
2169 |
+
<dim>4</dim>
|
2170 |
+
</port>
|
2171 |
+
</input>
|
2172 |
+
<output>
|
2173 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_1_output_0">
|
2174 |
+
<dim>1</dim>
|
2175 |
+
<dim>1</dim>
|
2176 |
+
<dim>64</dim>
|
2177 |
+
<dim>64</dim>
|
2178 |
+
</port>
|
2179 |
+
</output>
|
2180 |
+
</layer>
|
2181 |
+
<layer id="128" name="/anomaly_map_generator/Clip" type="Clamp" version="opset1">
|
2182 |
+
<data min="0" max="3.4028234663852886e+38" />
|
2183 |
+
<input>
|
2184 |
+
<port id="0" precision="FP32">
|
2185 |
+
<dim>1</dim>
|
2186 |
+
<dim>1</dim>
|
2187 |
+
<dim>64</dim>
|
2188 |
+
<dim>64</dim>
|
2189 |
+
</port>
|
2190 |
+
</input>
|
2191 |
+
<output>
|
2192 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Clip_output_0">
|
2193 |
+
<dim>1</dim>
|
2194 |
+
<dim>1</dim>
|
2195 |
+
<dim>64</dim>
|
2196 |
+
<dim>64</dim>
|
2197 |
+
</port>
|
2198 |
+
</output>
|
2199 |
+
</layer>
|
2200 |
+
<layer id="129" name="/anomaly_map_generator/Sqrt" type="Sqrt" version="opset1">
|
2201 |
+
<input>
|
2202 |
+
<port id="0" precision="FP32">
|
2203 |
+
<dim>1</dim>
|
2204 |
+
<dim>1</dim>
|
2205 |
+
<dim>64</dim>
|
2206 |
+
<dim>64</dim>
|
2207 |
+
</port>
|
2208 |
+
</input>
|
2209 |
+
<output>
|
2210 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Sqrt_output_0">
|
2211 |
+
<dim>1</dim>
|
2212 |
+
<dim>1</dim>
|
2213 |
+
<dim>64</dim>
|
2214 |
+
<dim>64</dim>
|
2215 |
+
</port>
|
2216 |
+
</output>
|
2217 |
+
</layer>
|
2218 |
+
<layer id="130" name="/anomaly_map_generator/Shape" type="ShapeOf" version="opset3">
|
2219 |
+
<data output_type="i64" />
|
2220 |
+
<input>
|
2221 |
+
<port id="0" precision="FP32">
|
2222 |
+
<dim>1</dim>
|
2223 |
+
<dim>1</dim>
|
2224 |
+
<dim>64</dim>
|
2225 |
+
<dim>64</dim>
|
2226 |
+
</port>
|
2227 |
+
</input>
|
2228 |
+
<output>
|
2229 |
+
<port id="1" precision="I64" names="/anomaly_map_generator/Shape_output_0">
|
2230 |
+
<dim>4</dim>
|
2231 |
+
</port>
|
2232 |
+
</output>
|
2233 |
+
</layer>
|
2234 |
+
<layer id="131" name="/anomaly_map_generator/Constant_4" type="Const" version="opset1">
|
2235 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
2236 |
+
<output>
|
2237 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_4_output_0">
|
2238 |
+
<dim>1</dim>
|
2239 |
+
</port>
|
2240 |
+
</output>
|
2241 |
+
</layer>
|
2242 |
+
<layer id="132" name="/anomaly_map_generator/Constant_5" type="Const" version="opset1">
|
2243 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2244 |
+
<output>
|
2245 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_5_output_0">
|
2246 |
+
<dim>1</dim>
|
2247 |
+
</port>
|
2248 |
+
</output>
|
2249 |
+
</layer>
|
2250 |
+
<layer id="133" name="Broadcast_1002" type="Const" version="opset1">
|
2251 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
2252 |
+
<output>
|
2253 |
+
<port id="0" precision="I64">
|
2254 |
+
<dim>1</dim>
|
2255 |
+
</port>
|
2256 |
+
</output>
|
2257 |
+
</layer>
|
2258 |
+
<layer id="134" name="/anomaly_map_generator/Slice" type="StridedSlice" version="opset1">
|
2259 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
2260 |
+
<input>
|
2261 |
+
<port id="0" precision="I64">
|
2262 |
+
<dim>4</dim>
|
2263 |
+
</port>
|
2264 |
+
<port id="1" precision="I64">
|
2265 |
+
<dim>1</dim>
|
2266 |
+
</port>
|
2267 |
+
<port id="2" precision="I64">
|
2268 |
+
<dim>1</dim>
|
2269 |
+
</port>
|
2270 |
+
<port id="3" precision="I64">
|
2271 |
+
<dim>1</dim>
|
2272 |
+
</port>
|
2273 |
+
</input>
|
2274 |
+
<output>
|
2275 |
+
<port id="4" precision="I64" names="/anomaly_map_generator/Slice_output_0">
|
2276 |
+
<dim>2</dim>
|
2277 |
+
</port>
|
2278 |
+
</output>
|
2279 |
+
</layer>
|
2280 |
+
<layer id="135" name="/anomaly_map_generator/Constant_6" type="Const" version="opset1">
|
2281 |
+
<data element_type="i64" shape="2" offset="176601516" size="16" />
|
2282 |
+
<output>
|
2283 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_6_output_0">
|
2284 |
+
<dim>2</dim>
|
2285 |
+
</port>
|
2286 |
+
</output>
|
2287 |
+
</layer>
|
2288 |
+
<layer id="136" name="/anomaly_map_generator/Concat" type="Concat" version="opset1">
|
2289 |
+
<data axis="0" />
|
2290 |
+
<input>
|
2291 |
+
<port id="0" precision="I64">
|
2292 |
+
<dim>2</dim>
|
2293 |
+
</port>
|
2294 |
+
<port id="1" precision="I64">
|
2295 |
+
<dim>2</dim>
|
2296 |
+
</port>
|
2297 |
+
</input>
|
2298 |
+
<output>
|
2299 |
+
<port id="2" precision="I64" names="/anomaly_map_generator/Concat_output_0">
|
2300 |
+
<dim>4</dim>
|
2301 |
+
</port>
|
2302 |
+
</output>
|
2303 |
+
</layer>
|
2304 |
+
<layer id="137" name="Convert_1025" type="Convert" version="opset1">
|
2305 |
+
<data destination_type="f32" />
|
2306 |
+
<input>
|
2307 |
+
<port id="0" precision="I64">
|
2308 |
+
<dim>4</dim>
|
2309 |
+
</port>
|
2310 |
+
</input>
|
2311 |
+
<output>
|
2312 |
+
<port id="1" precision="FP32">
|
2313 |
+
<dim>4</dim>
|
2314 |
+
</port>
|
2315 |
+
</output>
|
2316 |
+
</layer>
|
2317 |
+
<layer id="138" name="Convert_1024" type="Convert" version="opset1">
|
2318 |
+
<data destination_type="f32" />
|
2319 |
+
<input>
|
2320 |
+
<port id="0" precision="I64">
|
2321 |
+
<dim>4</dim>
|
2322 |
+
</port>
|
2323 |
+
</input>
|
2324 |
+
<output>
|
2325 |
+
<port id="1" precision="FP32">
|
2326 |
+
<dim>4</dim>
|
2327 |
+
</port>
|
2328 |
+
</output>
|
2329 |
+
</layer>
|
2330 |
+
<layer id="139" name="Divide_1026" type="Divide" version="opset1">
|
2331 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
2332 |
+
<input>
|
2333 |
+
<port id="0" precision="FP32">
|
2334 |
+
<dim>4</dim>
|
2335 |
+
</port>
|
2336 |
+
<port id="1" precision="FP32">
|
2337 |
+
<dim>4</dim>
|
2338 |
+
</port>
|
2339 |
+
</input>
|
2340 |
+
<output>
|
2341 |
+
<port id="2" precision="FP32">
|
2342 |
+
<dim>4</dim>
|
2343 |
+
</port>
|
2344 |
+
</output>
|
2345 |
+
</layer>
|
2346 |
+
<layer id="140" name="Constant_6585" type="Const" version="opset1">
|
2347 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
2348 |
+
<output>
|
2349 |
+
<port id="0" precision="FP32">
|
2350 |
+
<dim>1</dim>
|
2351 |
+
</port>
|
2352 |
+
</output>
|
2353 |
+
</layer>
|
2354 |
+
<layer id="141" name="Add_1028" type="Add" version="opset1">
|
2355 |
+
<data auto_broadcast="numpy" />
|
2356 |
+
<input>
|
2357 |
+
<port id="0" precision="FP32">
|
2358 |
+
<dim>4</dim>
|
2359 |
+
</port>
|
2360 |
+
<port id="1" precision="FP32">
|
2361 |
+
<dim>1</dim>
|
2362 |
+
</port>
|
2363 |
+
</input>
|
2364 |
+
<output>
|
2365 |
+
<port id="2" precision="FP32">
|
2366 |
+
<dim>4</dim>
|
2367 |
+
</port>
|
2368 |
+
</output>
|
2369 |
+
</layer>
|
2370 |
+
<layer id="142" name="/anomaly_map_generator/Resize" type="Interpolate" version="opset4">
|
2371 |
+
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
2372 |
+
<input>
|
2373 |
+
<port id="0" precision="FP32">
|
2374 |
+
<dim>1</dim>
|
2375 |
+
<dim>1</dim>
|
2376 |
+
<dim>64</dim>
|
2377 |
+
<dim>64</dim>
|
2378 |
+
</port>
|
2379 |
+
<port id="1" precision="I64">
|
2380 |
+
<dim>4</dim>
|
2381 |
+
</port>
|
2382 |
+
<port id="2" precision="FP32">
|
2383 |
+
<dim>4</dim>
|
2384 |
+
</port>
|
2385 |
+
</input>
|
2386 |
+
<output>
|
2387 |
+
<port id="3" precision="FP32" names="/anomaly_map_generator/Resize_output_0">
|
2388 |
+
<dim>1</dim>
|
2389 |
+
<dim>1</dim>
|
2390 |
+
<dim>256</dim>
|
2391 |
+
<dim>256</dim>
|
2392 |
+
</port>
|
2393 |
+
</output>
|
2394 |
+
</layer>
|
2395 |
+
<layer id="143" name="Split_1097.0" type="Const" version="opset1">
|
2396 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2397 |
+
<output>
|
2398 |
+
<port id="0" precision="I64">
|
2399 |
+
<dim>4</dim>
|
2400 |
+
</port>
|
2401 |
+
</output>
|
2402 |
+
</layer>
|
2403 |
+
<layer id="144" name="Split_1097.1" type="Const" version="opset1">
|
2404 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2405 |
+
<output>
|
2406 |
+
<port id="0" precision="I64">
|
2407 |
+
<dim>4</dim>
|
2408 |
+
</port>
|
2409 |
+
</output>
|
2410 |
+
</layer>
|
2411 |
+
<layer id="145" name="Constant_1095" type="Const" version="opset1">
|
2412 |
+
<data element_type="f32" shape="" offset="176601564" size="4" />
|
2413 |
+
<output>
|
2414 |
+
<port id="0" precision="FP32" />
|
2415 |
+
</output>
|
2416 |
+
</layer>
|
2417 |
+
<layer id="146" name="/anomaly_map_generator/blur/Pad" type="Pad" version="opset1">
|
2418 |
+
<data pad_mode="reflect" />
|
2419 |
+
<input>
|
2420 |
+
<port id="0" precision="FP32">
|
2421 |
+
<dim>1</dim>
|
2422 |
+
<dim>1</dim>
|
2423 |
+
<dim>256</dim>
|
2424 |
+
<dim>256</dim>
|
2425 |
+
</port>
|
2426 |
+
<port id="1" precision="I64">
|
2427 |
+
<dim>4</dim>
|
2428 |
+
</port>
|
2429 |
+
<port id="2" precision="I64">
|
2430 |
+
<dim>4</dim>
|
2431 |
+
</port>
|
2432 |
+
<port id="3" precision="FP32" />
|
2433 |
+
</input>
|
2434 |
+
<output>
|
2435 |
+
<port id="4" precision="FP32" names="/anomaly_map_generator/blur/Pad_output_0">
|
2436 |
+
<dim>1</dim>
|
2437 |
+
<dim>1</dim>
|
2438 |
+
<dim>288</dim>
|
2439 |
+
<dim>288</dim>
|
2440 |
+
</port>
|
2441 |
+
</output>
|
2442 |
+
</layer>
|
2443 |
+
<layer id="147" name="anomaly_map_generator.blur.kernel" type="Const" version="opset1">
|
2444 |
+
<data element_type="f32" shape="1, 1, 33, 33" offset="176601568" size="4356" />
|
2445 |
+
<output>
|
2446 |
+
<port id="0" precision="FP32" names="anomaly_map_generator.blur.kernel">
|
2447 |
+
<dim>1</dim>
|
2448 |
+
<dim>1</dim>
|
2449 |
+
<dim>33</dim>
|
2450 |
+
<dim>33</dim>
|
2451 |
+
</port>
|
2452 |
+
</output>
|
2453 |
+
</layer>
|
2454 |
+
<layer id="148" name="/anomaly_map_generator/blur/Conv" type="Convolution" version="opset1">
|
2455 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
2456 |
+
<input>
|
2457 |
+
<port id="0" precision="FP32">
|
2458 |
+
<dim>1</dim>
|
2459 |
+
<dim>1</dim>
|
2460 |
+
<dim>288</dim>
|
2461 |
+
<dim>288</dim>
|
2462 |
+
</port>
|
2463 |
+
<port id="1" precision="FP32">
|
2464 |
+
<dim>1</dim>
|
2465 |
+
<dim>1</dim>
|
2466 |
+
<dim>33</dim>
|
2467 |
+
<dim>33</dim>
|
2468 |
+
</port>
|
2469 |
+
</input>
|
2470 |
+
<output>
|
2471 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/blur/Conv_output_0">
|
2472 |
+
<dim>1</dim>
|
2473 |
+
<dim>1</dim>
|
2474 |
+
<dim>256</dim>
|
2475 |
+
<dim>256</dim>
|
2476 |
+
</port>
|
2477 |
+
</output>
|
2478 |
+
</layer>
|
2479 |
+
<layer id="149" name="/anomaly_map_generator/blur/Constant_8" type="Const" version="opset1">
|
2480 |
+
<data element_type="i64" shape="4" offset="176605924" size="32" />
|
2481 |
+
<output>
|
2482 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/blur/Constant_8_output_0">
|
2483 |
+
<dim>4</dim>
|
2484 |
+
</port>
|
2485 |
+
</output>
|
2486 |
+
</layer>
|
2487 |
+
<layer id="150" name="output" type="Reshape" version="opset1">
|
2488 |
+
<data special_zero="true" />
|
2489 |
+
<input>
|
2490 |
+
<port id="0" precision="FP32">
|
2491 |
+
<dim>1</dim>
|
2492 |
+
<dim>1</dim>
|
2493 |
+
<dim>256</dim>
|
2494 |
+
<dim>256</dim>
|
2495 |
+
</port>
|
2496 |
+
<port id="1" precision="I64">
|
2497 |
+
<dim>4</dim>
|
2498 |
+
</port>
|
2499 |
+
</input>
|
2500 |
+
<output>
|
2501 |
+
<port id="2" precision="FP32" names="output">
|
2502 |
+
<dim>1</dim>
|
2503 |
+
<dim>1</dim>
|
2504 |
+
<dim>256</dim>
|
2505 |
+
<dim>256</dim>
|
2506 |
+
</port>
|
2507 |
+
</output>
|
2508 |
+
</layer>
|
2509 |
+
<layer id="151" name="output/sink_port_0" type="Result" version="opset1">
|
2510 |
+
<input>
|
2511 |
+
<port id="0" precision="FP32">
|
2512 |
+
<dim>1</dim>
|
2513 |
+
<dim>1</dim>
|
2514 |
+
<dim>256</dim>
|
2515 |
+
<dim>256</dim>
|
2516 |
+
</port>
|
2517 |
+
</input>
|
2518 |
+
</layer>
|
2519 |
+
</layers>
|
2520 |
+
<edges>
|
2521 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
2522 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
|
2523 |
+
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
|
2524 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
|
2525 |
+
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
|
2526 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
|
2527 |
+
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
|
2528 |
+
<edge from-layer="6" from-port="1" to-layer="16" to-port="1" />
|
2529 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
|
2530 |
+
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
|
2531 |
+
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
|
2532 |
+
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
|
2533 |
+
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
|
2534 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
|
2535 |
+
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
|
2536 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
|
2537 |
+
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
|
2538 |
+
<edge from-layer="16" from-port="2" to-layer="17" to-port="0" />
|
2539 |
+
<edge from-layer="17" from-port="1" to-layer="19" to-port="0" />
|
2540 |
+
<edge from-layer="17" from-port="1" to-layer="27" to-port="1" />
|
2541 |
+
<edge from-layer="18" from-port="0" to-layer="19" to-port="1" />
|
2542 |
+
<edge from-layer="19" from-port="2" to-layer="21" to-port="0" />
|
2543 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="1" />
|
2544 |
+
<edge from-layer="21" from-port="2" to-layer="22" to-port="0" />
|
2545 |
+
<edge from-layer="22" from-port="1" to-layer="24" to-port="0" />
|
2546 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
|
2547 |
+
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
|
2548 |
+
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
|
2549 |
+
<edge from-layer="26" from-port="2" to-layer="27" to-port="0" />
|
2550 |
+
<edge from-layer="27" from-port="2" to-layer="28" to-port="0" />
|
2551 |
+
<edge from-layer="28" from-port="1" to-layer="30" to-port="0" />
|
2552 |
+
<edge from-layer="28" from-port="1" to-layer="39" to-port="0" />
|
2553 |
+
<edge from-layer="28" from-port="1" to-layer="68" to-port="0" />
|
2554 |
+
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
|
2555 |
+
<edge from-layer="30" from-port="2" to-layer="32" to-port="0" />
|
2556 |
+
<edge from-layer="31" from-port="0" to-layer="32" to-port="1" />
|
2557 |
+
<edge from-layer="32" from-port="2" to-layer="33" to-port="0" />
|
2558 |
+
<edge from-layer="33" from-port="1" to-layer="35" to-port="0" />
|
2559 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
2560 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
2561 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
|
2562 |
+
<edge from-layer="37" from-port="2" to-layer="42" to-port="0" />
|
2563 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
2564 |
+
<edge from-layer="39" from-port="2" to-layer="41" to-port="0" />
|
2565 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="1" />
|
2566 |
+
<edge from-layer="41" from-port="2" to-layer="42" to-port="1" />
|
2567 |
+
<edge from-layer="42" from-port="2" to-layer="43" to-port="0" />
|
2568 |
+
<edge from-layer="43" from-port="1" to-layer="45" to-port="0" />
|
2569 |
+
<edge from-layer="43" from-port="1" to-layer="53" to-port="1" />
|
2570 |
+
<edge from-layer="44" from-port="0" to-layer="45" to-port="1" />
|
2571 |
+
<edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
|
2572 |
+
<edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
|
2573 |
+
<edge from-layer="47" from-port="2" to-layer="48" to-port="0" />
|
2574 |
+
<edge from-layer="48" from-port="1" to-layer="50" to-port="0" />
|
2575 |
+
<edge from-layer="49" from-port="0" to-layer="50" to-port="1" />
|
2576 |
+
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
|
2577 |
+
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
|
2578 |
+
<edge from-layer="52" from-port="2" to-layer="53" to-port="0" />
|
2579 |
+
<edge from-layer="53" from-port="2" to-layer="54" to-port="0" />
|
2580 |
+
<edge from-layer="54" from-port="1" to-layer="55" to-port="0" />
|
2581 |
+
<edge from-layer="54" from-port="1" to-layer="67" to-port="0" />
|
2582 |
+
<edge from-layer="54" from-port="1" to-layer="79" to-port="0" />
|
2583 |
+
<edge from-layer="54" from-port="1" to-layer="70" to-port="0" />
|
2584 |
+
<edge from-layer="55" from-port="1" to-layer="59" to-port="0" />
|
2585 |
+
<edge from-layer="55" from-port="1" to-layer="63" to-port="0" />
|
2586 |
+
<edge from-layer="56" from-port="0" to-layer="59" to-port="1" />
|
2587 |
+
<edge from-layer="57" from-port="0" to-layer="59" to-port="2" />
|
2588 |
+
<edge from-layer="58" from-port="0" to-layer="59" to-port="3" />
|
2589 |
+
<edge from-layer="59" from-port="4" to-layer="61" to-port="0" />
|
2590 |
+
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
|
2591 |
+
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
|
2592 |
+
<edge from-layer="61" from-port="2" to-layer="67" to-port="1" />
|
2593 |
+
<edge from-layer="62" from-port="1" to-layer="64" to-port="0" />
|
2594 |
+
<edge from-layer="63" from-port="1" to-layer="64" to-port="1" />
|
2595 |
+
<edge from-layer="64" from-port="2" to-layer="66" to-port="0" />
|
2596 |
+
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
|
2597 |
+
<edge from-layer="66" from-port="2" to-layer="67" to-port="2" />
|
2598 |
+
<edge from-layer="67" from-port="3" to-layer="68" to-port="1" />
|
2599 |
+
<edge from-layer="68" from-port="2" to-layer="111" to-port="0" />
|
2600 |
+
<edge from-layer="68" from-port="2" to-layer="100" to-port="0" />
|
2601 |
+
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
|
2602 |
+
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
|
2603 |
+
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
|
2604 |
+
<edge from-layer="72" from-port="2" to-layer="73" to-port="0" />
|
2605 |
+
<edge from-layer="73" from-port="1" to-layer="75" to-port="0" />
|
2606 |
+
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
|
2607 |
+
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
|
2608 |
+
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
|
2609 |
+
<edge from-layer="77" from-port="2" to-layer="82" to-port="0" />
|
2610 |
+
<edge from-layer="78" from-port="0" to-layer="79" to-port="1" />
|
2611 |
+
<edge from-layer="79" from-port="2" to-layer="81" to-port="0" />
|
2612 |
+
<edge from-layer="80" from-port="0" to-layer="81" to-port="1" />
|
2613 |
+
<edge from-layer="81" from-port="2" to-layer="82" to-port="1" />
|
2614 |
+
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
|
2615 |
+
<edge from-layer="83" from-port="1" to-layer="85" to-port="0" />
|
2616 |
+
<edge from-layer="83" from-port="1" to-layer="93" to-port="1" />
|
2617 |
+
<edge from-layer="84" from-port="0" to-layer="85" to-port="1" />
|
2618 |
+
<edge from-layer="85" from-port="2" to-layer="87" to-port="0" />
|
2619 |
+
<edge from-layer="86" from-port="0" to-layer="87" to-port="1" />
|
2620 |
+
<edge from-layer="87" from-port="2" to-layer="88" to-port="0" />
|
2621 |
+
<edge from-layer="88" from-port="1" to-layer="90" to-port="0" />
|
2622 |
+
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
|
2623 |
+
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
|
2624 |
+
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
|
2625 |
+
<edge from-layer="92" from-port="2" to-layer="93" to-port="0" />
|
2626 |
+
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
|
2627 |
+
<edge from-layer="94" from-port="1" to-layer="95" to-port="0" />
|
2628 |
+
<edge from-layer="94" from-port="1" to-layer="110" to-port="0" />
|
2629 |
+
<edge from-layer="95" from-port="1" to-layer="99" to-port="0" />
|
2630 |
+
<edge from-layer="95" from-port="1" to-layer="106" to-port="0" />
|
2631 |
+
<edge from-layer="96" from-port="0" to-layer="99" to-port="1" />
|
2632 |
+
<edge from-layer="97" from-port="0" to-layer="99" to-port="2" />
|
2633 |
+
<edge from-layer="98" from-port="0" to-layer="99" to-port="3" />
|
2634 |
+
<edge from-layer="99" from-port="4" to-layer="104" to-port="0" />
|
2635 |
+
<edge from-layer="100" from-port="1" to-layer="103" to-port="0" />
|
2636 |
+
<edge from-layer="101" from-port="0" to-layer="103" to-port="1" />
|
2637 |
+
<edge from-layer="102" from-port="0" to-layer="103" to-port="2" />
|
2638 |
+
<edge from-layer="103" from-port="3" to-layer="104" to-port="1" />
|
2639 |
+
<edge from-layer="104" from-port="2" to-layer="105" to-port="0" />
|
2640 |
+
<edge from-layer="104" from-port="2" to-layer="110" to-port="1" />
|
2641 |
+
<edge from-layer="105" from-port="1" to-layer="107" to-port="0" />
|
2642 |
+
<edge from-layer="106" from-port="1" to-layer="107" to-port="1" />
|
2643 |
+
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
|
2644 |
+
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
|
2645 |
+
<edge from-layer="109" from-port="2" to-layer="110" to-port="2" />
|
2646 |
+
<edge from-layer="110" from-port="3" to-layer="111" to-port="1" />
|
2647 |
+
<edge from-layer="111" from-port="2" to-layer="114" to-port="0" />
|
2648 |
+
<edge from-layer="112" from-port="0" to-layer="114" to-port="1" />
|
2649 |
+
<edge from-layer="113" from-port="0" to-layer="114" to-port="2" />
|
2650 |
+
<edge from-layer="114" from-port="3" to-layer="116" to-port="0" />
|
2651 |
+
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
|
2652 |
+
<edge from-layer="116" from-port="2" to-layer="118" to-port="0" />
|
2653 |
+
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
|
2654 |
+
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
|
2655 |
+
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
|
2656 |
+
<edge from-layer="120" from-port="2" to-layer="122" to-port="0" />
|
2657 |
+
<edge from-layer="120" from-port="2" to-layer="123" to-port="1" />
|
2658 |
+
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
|
2659 |
+
<edge from-layer="122" from-port="2" to-layer="123" to-port="0" />
|
2660 |
+
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
|
2661 |
+
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
|
2662 |
+
<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
|
2663 |
+
<edge from-layer="126" from-port="0" to-layer="127" to-port="1" />
|
2664 |
+
<edge from-layer="127" from-port="2" to-layer="128" to-port="0" />
|
2665 |
+
<edge from-layer="128" from-port="1" to-layer="129" to-port="0" />
|
2666 |
+
<edge from-layer="129" from-port="1" to-layer="130" to-port="0" />
|
2667 |
+
<edge from-layer="129" from-port="1" to-layer="142" to-port="0" />
|
2668 |
+
<edge from-layer="130" from-port="1" to-layer="134" to-port="0" />
|
2669 |
+
<edge from-layer="130" from-port="1" to-layer="138" to-port="0" />
|
2670 |
+
<edge from-layer="131" from-port="0" to-layer="134" to-port="1" />
|
2671 |
+
<edge from-layer="132" from-port="0" to-layer="134" to-port="2" />
|
2672 |
+
<edge from-layer="133" from-port="0" to-layer="134" to-port="3" />
|
2673 |
+
<edge from-layer="134" from-port="4" to-layer="136" to-port="0" />
|
2674 |
+
<edge from-layer="135" from-port="0" to-layer="136" to-port="1" />
|
2675 |
+
<edge from-layer="136" from-port="2" to-layer="137" to-port="0" />
|
2676 |
+
<edge from-layer="136" from-port="2" to-layer="142" to-port="1" />
|
2677 |
+
<edge from-layer="137" from-port="1" to-layer="139" to-port="0" />
|
2678 |
+
<edge from-layer="138" from-port="1" to-layer="139" to-port="1" />
|
2679 |
+
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
|
2680 |
+
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
|
2681 |
+
<edge from-layer="141" from-port="2" to-layer="142" to-port="2" />
|
2682 |
+
<edge from-layer="142" from-port="3" to-layer="146" to-port="0" />
|
2683 |
+
<edge from-layer="143" from-port="0" to-layer="146" to-port="1" />
|
2684 |
+
<edge from-layer="144" from-port="0" to-layer="146" to-port="2" />
|
2685 |
+
<edge from-layer="145" from-port="0" to-layer="146" to-port="3" />
|
2686 |
+
<edge from-layer="146" from-port="4" to-layer="148" to-port="0" />
|
2687 |
+
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
|
2688 |
+
<edge from-layer="148" from-port="2" to-layer="150" to-port="0" />
|
2689 |
+
<edge from-layer="149" from-port="0" to-layer="150" to-port="1" />
|
2690 |
+
<edge from-layer="150" from-port="2" to-layer="151" to-port="0" />
|
2691 |
+
</edges>
|
2692 |
+
<rt_info>
|
2693 |
+
<MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2694 |
+
<Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2695 |
+
<conversion_parameters>
|
2696 |
+
<framework value="onnx" />
|
2697 |
+
<input_model value="DIR\model.onnx" />
|
2698 |
+
<model_name value="model" />
|
2699 |
+
<output_dir value="DIR" />
|
2700 |
+
</conversion_parameters>
|
2701 |
+
<legacy_frontend value="False" />
|
2702 |
+
</rt_info>
|
2703 |
+
</net>
|
pill/examples/001.png
ADDED
pill/examples/007.png
ADDED
pill/examples/013.png
ADDED
pill/examples/014.png
ADDED
pill/examples/019.png
ADDED
pill/examples/021.png
ADDED
pill/examples/022.png
ADDED
pill/run/weights/lightning/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e38efa86026af35d3ccf5e76916f36a53146f42f60d50f58d24bfd759b54952
|
3 |
+
size 202329404
|
pill/run/weights/openvino/metadata.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"task": "segmentation",
|
3 |
+
"transform": {
|
4 |
+
"__version__": "1.3.0",
|
5 |
+
"transform": {
|
6 |
+
"__class_fullname__": "Compose",
|
7 |
+
"p": 1.0,
|
8 |
+
"transforms": [
|
9 |
+
{
|
10 |
+
"__class_fullname__": "Resize",
|
11 |
+
"always_apply": true,
|
12 |
+
"p": 1,
|
13 |
+
"height": 256,
|
14 |
+
"width": 256,
|
15 |
+
"interpolation": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"__class_fullname__": "Normalize",
|
19 |
+
"always_apply": false,
|
20 |
+
"p": 1.0,
|
21 |
+
"mean": [
|
22 |
+
0.485,
|
23 |
+
0.456,
|
24 |
+
0.406
|
25 |
+
],
|
26 |
+
"std": [
|
27 |
+
0.229,
|
28 |
+
0.224,
|
29 |
+
0.225
|
30 |
+
],
|
31 |
+
"max_pixel_value": 255.0
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"__class_fullname__": "ToTensorV2",
|
35 |
+
"always_apply": true,
|
36 |
+
"p": 1.0,
|
37 |
+
"transpose_mask": false
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"bbox_params": null,
|
41 |
+
"keypoint_params": null,
|
42 |
+
"additional_targets": {
|
43 |
+
"image": "image",
|
44 |
+
"depth_image": "image"
|
45 |
+
}
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"image_threshold": 11.986470222473145,
|
49 |
+
"pixel_threshold": 9.849000930786133,
|
50 |
+
"min": 1.8367986679077148,
|
51 |
+
"max": 28.677541732788086
|
52 |
+
}
|
pill/run/weights/openvino/model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e12fc7290827c23dd6ed40fb3bd48f6787339c6d8fe8f78563af14da79409dea
|
3 |
+
size 176605956
|
pill/run/weights/openvino/model.mapping
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<mapping>
|
3 |
+
<map>
|
4 |
+
<framework name="input" output_port_id="input" />
|
5 |
+
<IR name="input" output_port_id="0" />
|
6 |
+
</map>
|
7 |
+
<map>
|
8 |
+
<framework name="onnx::Conv_260" output_port_id="onnx::Conv_260" />
|
9 |
+
<IR name="onnx::Conv_260" output_port_id="0" />
|
10 |
+
</map>
|
11 |
+
<map>
|
12 |
+
<framework name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/conv1/Conv_output_0" />
|
13 |
+
<IR name="/feature_extractor/feature_extractor/conv1/Conv" output_port_id="2" />
|
14 |
+
</map>
|
15 |
+
<map>
|
16 |
+
<framework name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="/feature_extractor/feature_extractor/act1/Relu_output_0" />
|
17 |
+
<IR name="/feature_extractor/feature_extractor/act1/Relu" output_port_id="1" />
|
18 |
+
</map>
|
19 |
+
<map>
|
20 |
+
<framework name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0" />
|
21 |
+
<IR name="/feature_extractor/feature_extractor/maxpool/MaxPool" output_port_id="1" />
|
22 |
+
</map>
|
23 |
+
<map>
|
24 |
+
<framework name="onnx::Conv_263" output_port_id="onnx::Conv_263" />
|
25 |
+
<IR name="onnx::Conv_263" output_port_id="0" />
|
26 |
+
</map>
|
27 |
+
<map>
|
28 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0" />
|
29 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" output_port_id="2" />
|
30 |
+
</map>
|
31 |
+
<map>
|
32 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0" />
|
33 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" output_port_id="1" />
|
34 |
+
</map>
|
35 |
+
<map>
|
36 |
+
<framework name="onnx::Conv_266" output_port_id="onnx::Conv_266" />
|
37 |
+
<IR name="onnx::Conv_266" output_port_id="0" />
|
38 |
+
</map>
|
39 |
+
<map>
|
40 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0" />
|
41 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" output_port_id="2" />
|
42 |
+
</map>
|
43 |
+
<map>
|
44 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0" />
|
45 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" output_port_id="2" />
|
46 |
+
</map>
|
47 |
+
<map>
|
48 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0" />
|
49 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" output_port_id="1" />
|
50 |
+
</map>
|
51 |
+
<map>
|
52 |
+
<framework name="onnx::Conv_269" output_port_id="onnx::Conv_269" />
|
53 |
+
<IR name="onnx::Conv_269" output_port_id="0" />
|
54 |
+
</map>
|
55 |
+
<map>
|
56 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0" />
|
57 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" output_port_id="2" />
|
58 |
+
</map>
|
59 |
+
<map>
|
60 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0" />
|
61 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" output_port_id="1" />
|
62 |
+
</map>
|
63 |
+
<map>
|
64 |
+
<framework name="onnx::Conv_272" output_port_id="onnx::Conv_272" />
|
65 |
+
<IR name="onnx::Conv_272" output_port_id="0" />
|
66 |
+
</map>
|
67 |
+
<map>
|
68 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0" />
|
69 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" output_port_id="2" />
|
70 |
+
</map>
|
71 |
+
<map>
|
72 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0" />
|
73 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" output_port_id="2" />
|
74 |
+
</map>
|
75 |
+
<map>
|
76 |
+
<framework name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0" />
|
77 |
+
<IR name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" output_port_id="1" />
|
78 |
+
</map>
|
79 |
+
<map>
|
80 |
+
<framework name="onnx::Conv_275" output_port_id="onnx::Conv_275" />
|
81 |
+
<IR name="onnx::Conv_275" output_port_id="0" />
|
82 |
+
</map>
|
83 |
+
<map>
|
84 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0" />
|
85 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" output_port_id="2" />
|
86 |
+
</map>
|
87 |
+
<map>
|
88 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0" />
|
89 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" output_port_id="1" />
|
90 |
+
</map>
|
91 |
+
<map>
|
92 |
+
<framework name="onnx::Conv_278" output_port_id="onnx::Conv_278" />
|
93 |
+
<IR name="onnx::Conv_278" output_port_id="0" />
|
94 |
+
</map>
|
95 |
+
<map>
|
96 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0" />
|
97 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" output_port_id="2" />
|
98 |
+
</map>
|
99 |
+
<map>
|
100 |
+
<framework name="onnx::Conv_281" output_port_id="onnx::Conv_281" />
|
101 |
+
<IR name="onnx::Conv_281" output_port_id="0" />
|
102 |
+
</map>
|
103 |
+
<map>
|
104 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0" />
|
105 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" output_port_id="2" />
|
106 |
+
</map>
|
107 |
+
<map>
|
108 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0" />
|
109 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" output_port_id="2" />
|
110 |
+
</map>
|
111 |
+
<map>
|
112 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0" />
|
113 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" output_port_id="1" />
|
114 |
+
</map>
|
115 |
+
<map>
|
116 |
+
<framework name="onnx::Conv_284" output_port_id="onnx::Conv_284" />
|
117 |
+
<IR name="onnx::Conv_284" output_port_id="0" />
|
118 |
+
</map>
|
119 |
+
<map>
|
120 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0" />
|
121 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" output_port_id="2" />
|
122 |
+
</map>
|
123 |
+
<map>
|
124 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0" />
|
125 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" output_port_id="1" />
|
126 |
+
</map>
|
127 |
+
<map>
|
128 |
+
<framework name="onnx::Conv_287" output_port_id="onnx::Conv_287" />
|
129 |
+
<IR name="onnx::Conv_287" output_port_id="0" />
|
130 |
+
</map>
|
131 |
+
<map>
|
132 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0" />
|
133 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" output_port_id="2" />
|
134 |
+
</map>
|
135 |
+
<map>
|
136 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0" />
|
137 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" output_port_id="2" />
|
138 |
+
</map>
|
139 |
+
<map>
|
140 |
+
<framework name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0" />
|
141 |
+
<IR name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" output_port_id="1" />
|
142 |
+
</map>
|
143 |
+
<map>
|
144 |
+
<framework name="/Shape" output_port_id="/Shape_output_0" />
|
145 |
+
<IR name="/Shape" output_port_id="1" />
|
146 |
+
</map>
|
147 |
+
<map>
|
148 |
+
<framework name="/Constant_1" output_port_id="/Constant_1_output_0" />
|
149 |
+
<IR name="/Constant_1" output_port_id="0" />
|
150 |
+
</map>
|
151 |
+
<map>
|
152 |
+
<framework name="/Constant_2" output_port_id="/Constant_2_output_0" />
|
153 |
+
<IR name="/Constant_2" output_port_id="0" />
|
154 |
+
</map>
|
155 |
+
<map>
|
156 |
+
<framework name="/Slice" output_port_id="/Slice_output_0" />
|
157 |
+
<IR name="/Slice" output_port_id="4" />
|
158 |
+
</map>
|
159 |
+
<map>
|
160 |
+
<framework name="/Constant_3" output_port_id="/Constant_3_output_0" />
|
161 |
+
<IR name="/Constant_3" output_port_id="0" />
|
162 |
+
</map>
|
163 |
+
<map>
|
164 |
+
<framework name="/Concat" output_port_id="/Concat_output_0" />
|
165 |
+
<IR name="/Concat" output_port_id="2" />
|
166 |
+
</map>
|
167 |
+
<map>
|
168 |
+
<framework name="/Resize" output_port_id="/Resize_output_0" />
|
169 |
+
<IR name="/Resize" output_port_id="3" />
|
170 |
+
</map>
|
171 |
+
<map>
|
172 |
+
<framework name="/Concat_1" output_port_id="/Concat_1_output_0" />
|
173 |
+
<IR name="/Concat_1" output_port_id="2" />
|
174 |
+
</map>
|
175 |
+
<map>
|
176 |
+
<framework name="onnx::Conv_290" output_port_id="onnx::Conv_290" />
|
177 |
+
<IR name="onnx::Conv_290" output_port_id="0" />
|
178 |
+
</map>
|
179 |
+
<map>
|
180 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0" />
|
181 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" output_port_id="2" />
|
182 |
+
</map>
|
183 |
+
<map>
|
184 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0" />
|
185 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" output_port_id="1" />
|
186 |
+
</map>
|
187 |
+
<map>
|
188 |
+
<framework name="onnx::Conv_293" output_port_id="onnx::Conv_293" />
|
189 |
+
<IR name="onnx::Conv_293" output_port_id="0" />
|
190 |
+
</map>
|
191 |
+
<map>
|
192 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0" />
|
193 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" output_port_id="2" />
|
194 |
+
</map>
|
195 |
+
<map>
|
196 |
+
<framework name="onnx::Conv_296" output_port_id="onnx::Conv_296" />
|
197 |
+
<IR name="onnx::Conv_296" output_port_id="0" />
|
198 |
+
</map>
|
199 |
+
<map>
|
200 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0" />
|
201 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" output_port_id="2" />
|
202 |
+
</map>
|
203 |
+
<map>
|
204 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0" />
|
205 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" output_port_id="2" />
|
206 |
+
</map>
|
207 |
+
<map>
|
208 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0" />
|
209 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" output_port_id="1" />
|
210 |
+
</map>
|
211 |
+
<map>
|
212 |
+
<framework name="onnx::Conv_299" output_port_id="onnx::Conv_299" />
|
213 |
+
<IR name="onnx::Conv_299" output_port_id="0" />
|
214 |
+
</map>
|
215 |
+
<map>
|
216 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0" />
|
217 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" output_port_id="2" />
|
218 |
+
</map>
|
219 |
+
<map>
|
220 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0" />
|
221 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" output_port_id="1" />
|
222 |
+
</map>
|
223 |
+
<map>
|
224 |
+
<framework name="onnx::Conv_302" output_port_id="onnx::Conv_302" />
|
225 |
+
<IR name="onnx::Conv_302" output_port_id="0" />
|
226 |
+
</map>
|
227 |
+
<map>
|
228 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0" />
|
229 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" output_port_id="2" />
|
230 |
+
</map>
|
231 |
+
<map>
|
232 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0" />
|
233 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" output_port_id="2" />
|
234 |
+
</map>
|
235 |
+
<map>
|
236 |
+
<framework name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0" />
|
237 |
+
<IR name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" output_port_id="1" />
|
238 |
+
</map>
|
239 |
+
<map>
|
240 |
+
<framework name="/Shape_3" output_port_id="/Shape_3_output_0" />
|
241 |
+
<IR name="/Shape_3" output_port_id="1" />
|
242 |
+
</map>
|
243 |
+
<map>
|
244 |
+
<framework name="/Constant_9" output_port_id="/Constant_9_output_0" />
|
245 |
+
<IR name="/Constant_9" output_port_id="0" />
|
246 |
+
</map>
|
247 |
+
<map>
|
248 |
+
<framework name="/Constant_10" output_port_id="/Constant_10_output_0" />
|
249 |
+
<IR name="/Constant_10" output_port_id="0" />
|
250 |
+
</map>
|
251 |
+
<map>
|
252 |
+
<framework name="/Slice_1" output_port_id="/Slice_1_output_0" />
|
253 |
+
<IR name="/Slice_1" output_port_id="4" />
|
254 |
+
</map>
|
255 |
+
<map>
|
256 |
+
<framework name="/Shape_1" output_port_id="/Shape_1_output_0" />
|
257 |
+
<IR name="/Shape_1" output_port_id="1" />
|
258 |
+
</map>
|
259 |
+
<map>
|
260 |
+
<framework name="/Shape_1" output_port_id="/Shape_2_output_0" />
|
261 |
+
<IR name="/Shape_1" output_port_id="1" />
|
262 |
+
</map>
|
263 |
+
<map>
|
264 |
+
<framework name="Gather_6092" output_port_id="/Concat_2_output_0" />
|
265 |
+
<IR name="Gather_6092" output_port_id="3" />
|
266 |
+
</map>
|
267 |
+
<map>
|
268 |
+
<framework name="Gather_6092" output_port_id="/Cast_output_0" />
|
269 |
+
<IR name="Gather_6092" output_port_id="3" />
|
270 |
+
</map>
|
271 |
+
<map>
|
272 |
+
<framework name="/Concat_3" output_port_id="/Concat_3_output_0" />
|
273 |
+
<IR name="/Concat_3" output_port_id="2" />
|
274 |
+
</map>
|
275 |
+
<map>
|
276 |
+
<framework name="/Resize_1" output_port_id="/Resize_1_output_0" />
|
277 |
+
<IR name="/Resize_1" output_port_id="3" />
|
278 |
+
</map>
|
279 |
+
<map>
|
280 |
+
<framework name="/Concat_4" output_port_id="/Concat_4_output_0" />
|
281 |
+
<IR name="/Concat_4" output_port_id="2" />
|
282 |
+
</map>
|
283 |
+
<map>
|
284 |
+
<framework name="onnx::Gather_308" output_port_id="onnx::Gather_308" />
|
285 |
+
<IR name="onnx::Gather_308" output_port_id="0" />
|
286 |
+
</map>
|
287 |
+
<map>
|
288 |
+
<framework name="/Gather_2" output_port_id="/Gather_2_output_0" />
|
289 |
+
<IR name="/Gather_2" output_port_id="3" />
|
290 |
+
</map>
|
291 |
+
<map>
|
292 |
+
<framework name="/anomaly_map_generator/Constant" output_port_id="/anomaly_map_generator/Constant_output_0" />
|
293 |
+
<IR name="/anomaly_map_generator/Constant" output_port_id="0" />
|
294 |
+
</map>
|
295 |
+
<map>
|
296 |
+
<framework name="/anomaly_map_generator/Reshape" output_port_id="/anomaly_map_generator/Reshape_output_0" />
|
297 |
+
<IR name="/anomaly_map_generator/Reshape" output_port_id="2" />
|
298 |
+
</map>
|
299 |
+
<map>
|
300 |
+
<framework name="/anomaly_map_generator/Sub" output_port_id="/anomaly_map_generator/Sub_output_0" />
|
301 |
+
<IR name="/anomaly_map_generator/Sub" output_port_id="2" />
|
302 |
+
</map>
|
303 |
+
<map>
|
304 |
+
<framework name="/anomaly_map_generator/Transpose" output_port_id="/anomaly_map_generator/Transpose_output_0" />
|
305 |
+
<IR name="/anomaly_map_generator/Transpose" output_port_id="2" />
|
306 |
+
</map>
|
307 |
+
<map>
|
308 |
+
<framework name="onnx::MatMul_310" output_port_id="onnx::MatMul_310" />
|
309 |
+
<IR name="onnx::MatMul_310" output_port_id="0" />
|
310 |
+
</map>
|
311 |
+
<map>
|
312 |
+
<framework name="/anomaly_map_generator/MatMul" output_port_id="/anomaly_map_generator/MatMul_output_0" />
|
313 |
+
<IR name="/anomaly_map_generator/MatMul" output_port_id="2" />
|
314 |
+
</map>
|
315 |
+
<map>
|
316 |
+
<framework name="/anomaly_map_generator/Mul" output_port_id="/anomaly_map_generator/Mul_output_0" />
|
317 |
+
<IR name="/anomaly_map_generator/Mul" output_port_id="2" />
|
318 |
+
</map>
|
319 |
+
<map>
|
320 |
+
<framework name="/anomaly_map_generator/ReduceSum" output_port_id="/anomaly_map_generator/ReduceSum_output_0" />
|
321 |
+
<IR name="/anomaly_map_generator/ReduceSum" output_port_id="2" />
|
322 |
+
</map>
|
323 |
+
<map>
|
324 |
+
<framework name="/anomaly_map_generator/Constant_1" output_port_id="/anomaly_map_generator/Constant_1_output_0" />
|
325 |
+
<IR name="/anomaly_map_generator/Constant_1" output_port_id="0" />
|
326 |
+
</map>
|
327 |
+
<map>
|
328 |
+
<framework name="/anomaly_map_generator/Reshape_1" output_port_id="/anomaly_map_generator/Reshape_1_output_0" />
|
329 |
+
<IR name="/anomaly_map_generator/Reshape_1" output_port_id="2" />
|
330 |
+
</map>
|
331 |
+
<map>
|
332 |
+
<framework name="/anomaly_map_generator/Clip" output_port_id="/anomaly_map_generator/Clip_output_0" />
|
333 |
+
<IR name="/anomaly_map_generator/Clip" output_port_id="1" />
|
334 |
+
</map>
|
335 |
+
<map>
|
336 |
+
<framework name="/anomaly_map_generator/Sqrt" output_port_id="/anomaly_map_generator/Sqrt_output_0" />
|
337 |
+
<IR name="/anomaly_map_generator/Sqrt" output_port_id="1" />
|
338 |
+
</map>
|
339 |
+
<map>
|
340 |
+
<framework name="/anomaly_map_generator/Shape" output_port_id="/anomaly_map_generator/Shape_output_0" />
|
341 |
+
<IR name="/anomaly_map_generator/Shape" output_port_id="1" />
|
342 |
+
</map>
|
343 |
+
<map>
|
344 |
+
<framework name="/anomaly_map_generator/Constant_4" output_port_id="/anomaly_map_generator/Constant_4_output_0" />
|
345 |
+
<IR name="/anomaly_map_generator/Constant_4" output_port_id="0" />
|
346 |
+
</map>
|
347 |
+
<map>
|
348 |
+
<framework name="/anomaly_map_generator/Constant_5" output_port_id="/anomaly_map_generator/Constant_5_output_0" />
|
349 |
+
<IR name="/anomaly_map_generator/Constant_5" output_port_id="0" />
|
350 |
+
</map>
|
351 |
+
<map>
|
352 |
+
<framework name="/anomaly_map_generator/Slice" output_port_id="/anomaly_map_generator/Slice_output_0" />
|
353 |
+
<IR name="/anomaly_map_generator/Slice" output_port_id="4" />
|
354 |
+
</map>
|
355 |
+
<map>
|
356 |
+
<framework name="/anomaly_map_generator/Constant_6" output_port_id="/anomaly_map_generator/Constant_6_output_0" />
|
357 |
+
<IR name="/anomaly_map_generator/Constant_6" output_port_id="0" />
|
358 |
+
</map>
|
359 |
+
<map>
|
360 |
+
<framework name="/anomaly_map_generator/Concat" output_port_id="/anomaly_map_generator/Concat_output_0" />
|
361 |
+
<IR name="/anomaly_map_generator/Concat" output_port_id="2" />
|
362 |
+
</map>
|
363 |
+
<map>
|
364 |
+
<framework name="/anomaly_map_generator/Resize" output_port_id="/anomaly_map_generator/Resize_output_0" />
|
365 |
+
<IR name="/anomaly_map_generator/Resize" output_port_id="3" />
|
366 |
+
</map>
|
367 |
+
<map>
|
368 |
+
<framework name="/anomaly_map_generator/blur/Pad" output_port_id="/anomaly_map_generator/blur/Pad_output_0" />
|
369 |
+
<IR name="/anomaly_map_generator/blur/Pad" output_port_id="4" />
|
370 |
+
</map>
|
371 |
+
<map>
|
372 |
+
<framework name="anomaly_map_generator.blur.kernel" output_port_id="anomaly_map_generator.blur.kernel" />
|
373 |
+
<IR name="anomaly_map_generator.blur.kernel" output_port_id="0" />
|
374 |
+
</map>
|
375 |
+
<map>
|
376 |
+
<framework name="/anomaly_map_generator/blur/Conv" output_port_id="/anomaly_map_generator/blur/Conv_output_0" />
|
377 |
+
<IR name="/anomaly_map_generator/blur/Conv" output_port_id="2" />
|
378 |
+
</map>
|
379 |
+
<map>
|
380 |
+
<framework name="/anomaly_map_generator/blur/Constant_8" output_port_id="/anomaly_map_generator/blur/Constant_8_output_0" />
|
381 |
+
<IR name="/anomaly_map_generator/blur/Constant_8" output_port_id="0" />
|
382 |
+
</map>
|
383 |
+
<map>
|
384 |
+
<framework name="output" output_port_id="output" />
|
385 |
+
<IR name="output" output_port_id="2" />
|
386 |
+
</map>
|
387 |
+
</mapping>
|
pill/run/weights/openvino/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1d3587f01391ac27e8289838cbb9e396eb6c383bc059c5ac24745d5d2c3e10b
|
3 |
+
size 176626689
|
pill/run/weights/openvino/model.xml
ADDED
@@ -0,0 +1,2703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="torch_jit" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="1,3,256,256" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>1</dim>
|
9 |
+
<dim>3</dim>
|
10 |
+
<dim>256</dim>
|
11 |
+
<dim>256</dim>
|
12 |
+
</port>
|
13 |
+
</output>
|
14 |
+
</layer>
|
15 |
+
<layer id="1" name="onnx::Conv_260" type="Const" version="opset1">
|
16 |
+
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
|
17 |
+
<output>
|
18 |
+
<port id="0" precision="FP32" names="onnx::Conv_260">
|
19 |
+
<dim>64</dim>
|
20 |
+
<dim>3</dim>
|
21 |
+
<dim>7</dim>
|
22 |
+
<dim>7</dim>
|
23 |
+
</port>
|
24 |
+
</output>
|
25 |
+
</layer>
|
26 |
+
<layer id="2" name="/feature_extractor/feature_extractor/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
27 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP32">
|
30 |
+
<dim>1</dim>
|
31 |
+
<dim>3</dim>
|
32 |
+
<dim>256</dim>
|
33 |
+
<dim>256</dim>
|
34 |
+
</port>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>64</dim>
|
37 |
+
<dim>3</dim>
|
38 |
+
<dim>7</dim>
|
39 |
+
<dim>7</dim>
|
40 |
+
</port>
|
41 |
+
</input>
|
42 |
+
<output>
|
43 |
+
<port id="2" precision="FP32">
|
44 |
+
<dim>1</dim>
|
45 |
+
<dim>64</dim>
|
46 |
+
<dim>128</dim>
|
47 |
+
<dim>128</dim>
|
48 |
+
</port>
|
49 |
+
</output>
|
50 |
+
</layer>
|
51 |
+
<layer id="3" name="Reshape_55" type="Const" version="opset1">
|
52 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
|
53 |
+
<output>
|
54 |
+
<port id="0" precision="FP32">
|
55 |
+
<dim>1</dim>
|
56 |
+
<dim>64</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
<dim>1</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="/feature_extractor/feature_extractor/conv1/Conv" type="Add" version="opset1">
|
63 |
+
<data auto_broadcast="numpy" />
|
64 |
+
<input>
|
65 |
+
<port id="0" precision="FP32">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>64</dim>
|
68 |
+
<dim>128</dim>
|
69 |
+
<dim>128</dim>
|
70 |
+
</port>
|
71 |
+
<port id="1" precision="FP32">
|
72 |
+
<dim>1</dim>
|
73 |
+
<dim>64</dim>
|
74 |
+
<dim>1</dim>
|
75 |
+
<dim>1</dim>
|
76 |
+
</port>
|
77 |
+
</input>
|
78 |
+
<output>
|
79 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/conv1/Conv_output_0">
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>64</dim>
|
82 |
+
<dim>128</dim>
|
83 |
+
<dim>128</dim>
|
84 |
+
</port>
|
85 |
+
</output>
|
86 |
+
</layer>
|
87 |
+
<layer id="5" name="/feature_extractor/feature_extractor/act1/Relu" type="ReLU" version="opset1">
|
88 |
+
<input>
|
89 |
+
<port id="0" precision="FP32">
|
90 |
+
<dim>1</dim>
|
91 |
+
<dim>64</dim>
|
92 |
+
<dim>128</dim>
|
93 |
+
<dim>128</dim>
|
94 |
+
</port>
|
95 |
+
</input>
|
96 |
+
<output>
|
97 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/act1/Relu_output_0">
|
98 |
+
<dim>1</dim>
|
99 |
+
<dim>64</dim>
|
100 |
+
<dim>128</dim>
|
101 |
+
<dim>128</dim>
|
102 |
+
</port>
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="6" name="/feature_extractor/feature_extractor/maxpool/MaxPool" type="MaxPool" version="opset8">
|
106 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="0" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="FP32">
|
109 |
+
<dim>1</dim>
|
110 |
+
<dim>64</dim>
|
111 |
+
<dim>128</dim>
|
112 |
+
<dim>128</dim>
|
113 |
+
</port>
|
114 |
+
</input>
|
115 |
+
<output>
|
116 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/maxpool/MaxPool_output_0">
|
117 |
+
<dim>1</dim>
|
118 |
+
<dim>64</dim>
|
119 |
+
<dim>64</dim>
|
120 |
+
<dim>64</dim>
|
121 |
+
</port>
|
122 |
+
<port id="2" precision="I64">
|
123 |
+
<dim>1</dim>
|
124 |
+
<dim>64</dim>
|
125 |
+
<dim>64</dim>
|
126 |
+
<dim>64</dim>
|
127 |
+
</port>
|
128 |
+
</output>
|
129 |
+
</layer>
|
130 |
+
<layer id="7" name="onnx::Conv_263" type="Const" version="opset1">
|
131 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="37888" size="147456" />
|
132 |
+
<output>
|
133 |
+
<port id="0" precision="FP32" names="onnx::Conv_263">
|
134 |
+
<dim>64</dim>
|
135 |
+
<dim>64</dim>
|
136 |
+
<dim>3</dim>
|
137 |
+
<dim>3</dim>
|
138 |
+
</port>
|
139 |
+
</output>
|
140 |
+
</layer>
|
141 |
+
<layer id="8" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
142 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="FP32">
|
145 |
+
<dim>1</dim>
|
146 |
+
<dim>64</dim>
|
147 |
+
<dim>64</dim>
|
148 |
+
<dim>64</dim>
|
149 |
+
</port>
|
150 |
+
<port id="1" precision="FP32">
|
151 |
+
<dim>64</dim>
|
152 |
+
<dim>64</dim>
|
153 |
+
<dim>3</dim>
|
154 |
+
<dim>3</dim>
|
155 |
+
</port>
|
156 |
+
</input>
|
157 |
+
<output>
|
158 |
+
<port id="2" precision="FP32">
|
159 |
+
<dim>1</dim>
|
160 |
+
<dim>64</dim>
|
161 |
+
<dim>64</dim>
|
162 |
+
<dim>64</dim>
|
163 |
+
</port>
|
164 |
+
</output>
|
165 |
+
</layer>
|
166 |
+
<layer id="9" name="Reshape_105" type="Const" version="opset1">
|
167 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="185344" size="256" />
|
168 |
+
<output>
|
169 |
+
<port id="0" precision="FP32">
|
170 |
+
<dim>1</dim>
|
171 |
+
<dim>64</dim>
|
172 |
+
<dim>1</dim>
|
173 |
+
<dim>1</dim>
|
174 |
+
</port>
|
175 |
+
</output>
|
176 |
+
</layer>
|
177 |
+
<layer id="10" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv" type="Add" version="opset1">
|
178 |
+
<data auto_broadcast="numpy" />
|
179 |
+
<input>
|
180 |
+
<port id="0" precision="FP32">
|
181 |
+
<dim>1</dim>
|
182 |
+
<dim>64</dim>
|
183 |
+
<dim>64</dim>
|
184 |
+
<dim>64</dim>
|
185 |
+
</port>
|
186 |
+
<port id="1" precision="FP32">
|
187 |
+
<dim>1</dim>
|
188 |
+
<dim>64</dim>
|
189 |
+
<dim>1</dim>
|
190 |
+
<dim>1</dim>
|
191 |
+
</port>
|
192 |
+
</input>
|
193 |
+
<output>
|
194 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv1/Conv_output_0">
|
195 |
+
<dim>1</dim>
|
196 |
+
<dim>64</dim>
|
197 |
+
<dim>64</dim>
|
198 |
+
<dim>64</dim>
|
199 |
+
</port>
|
200 |
+
</output>
|
201 |
+
</layer>
|
202 |
+
<layer id="11" name="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu" type="ReLU" version="opset1">
|
203 |
+
<input>
|
204 |
+
<port id="0" precision="FP32">
|
205 |
+
<dim>1</dim>
|
206 |
+
<dim>64</dim>
|
207 |
+
<dim>64</dim>
|
208 |
+
<dim>64</dim>
|
209 |
+
</port>
|
210 |
+
</input>
|
211 |
+
<output>
|
212 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act1/Relu_output_0">
|
213 |
+
<dim>1</dim>
|
214 |
+
<dim>64</dim>
|
215 |
+
<dim>64</dim>
|
216 |
+
<dim>64</dim>
|
217 |
+
</port>
|
218 |
+
</output>
|
219 |
+
</layer>
|
220 |
+
<layer id="12" name="onnx::Conv_266" type="Const" version="opset1">
|
221 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="185600" size="147456" />
|
222 |
+
<output>
|
223 |
+
<port id="0" precision="FP32" names="onnx::Conv_266">
|
224 |
+
<dim>64</dim>
|
225 |
+
<dim>64</dim>
|
226 |
+
<dim>3</dim>
|
227 |
+
<dim>3</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="13" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
232 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
233 |
+
<input>
|
234 |
+
<port id="0" precision="FP32">
|
235 |
+
<dim>1</dim>
|
236 |
+
<dim>64</dim>
|
237 |
+
<dim>64</dim>
|
238 |
+
<dim>64</dim>
|
239 |
+
</port>
|
240 |
+
<port id="1" precision="FP32">
|
241 |
+
<dim>64</dim>
|
242 |
+
<dim>64</dim>
|
243 |
+
<dim>3</dim>
|
244 |
+
<dim>3</dim>
|
245 |
+
</port>
|
246 |
+
</input>
|
247 |
+
<output>
|
248 |
+
<port id="2" precision="FP32">
|
249 |
+
<dim>1</dim>
|
250 |
+
<dim>64</dim>
|
251 |
+
<dim>64</dim>
|
252 |
+
<dim>64</dim>
|
253 |
+
</port>
|
254 |
+
</output>
|
255 |
+
</layer>
|
256 |
+
<layer id="14" name="Reshape_154" type="Const" version="opset1">
|
257 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="333056" size="256" />
|
258 |
+
<output>
|
259 |
+
<port id="0" precision="FP32">
|
260 |
+
<dim>1</dim>
|
261 |
+
<dim>64</dim>
|
262 |
+
<dim>1</dim>
|
263 |
+
<dim>1</dim>
|
264 |
+
</port>
|
265 |
+
</output>
|
266 |
+
</layer>
|
267 |
+
<layer id="15" name="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv" type="Add" version="opset1">
|
268 |
+
<data auto_broadcast="numpy" />
|
269 |
+
<input>
|
270 |
+
<port id="0" precision="FP32">
|
271 |
+
<dim>1</dim>
|
272 |
+
<dim>64</dim>
|
273 |
+
<dim>64</dim>
|
274 |
+
<dim>64</dim>
|
275 |
+
</port>
|
276 |
+
<port id="1" precision="FP32">
|
277 |
+
<dim>1</dim>
|
278 |
+
<dim>64</dim>
|
279 |
+
<dim>1</dim>
|
280 |
+
<dim>1</dim>
|
281 |
+
</port>
|
282 |
+
</input>
|
283 |
+
<output>
|
284 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/conv2/Conv_output_0">
|
285 |
+
<dim>1</dim>
|
286 |
+
<dim>64</dim>
|
287 |
+
<dim>64</dim>
|
288 |
+
<dim>64</dim>
|
289 |
+
</port>
|
290 |
+
</output>
|
291 |
+
</layer>
|
292 |
+
<layer id="16" name="/feature_extractor/feature_extractor/layer1/layer1.0/Add" type="Add" version="opset1">
|
293 |
+
<data auto_broadcast="numpy" />
|
294 |
+
<input>
|
295 |
+
<port id="0" precision="FP32">
|
296 |
+
<dim>1</dim>
|
297 |
+
<dim>64</dim>
|
298 |
+
<dim>64</dim>
|
299 |
+
<dim>64</dim>
|
300 |
+
</port>
|
301 |
+
<port id="1" precision="FP32">
|
302 |
+
<dim>1</dim>
|
303 |
+
<dim>64</dim>
|
304 |
+
<dim>64</dim>
|
305 |
+
<dim>64</dim>
|
306 |
+
</port>
|
307 |
+
</input>
|
308 |
+
<output>
|
309 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/Add_output_0">
|
310 |
+
<dim>1</dim>
|
311 |
+
<dim>64</dim>
|
312 |
+
<dim>64</dim>
|
313 |
+
<dim>64</dim>
|
314 |
+
</port>
|
315 |
+
</output>
|
316 |
+
</layer>
|
317 |
+
<layer id="17" name="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu" type="ReLU" version="opset1">
|
318 |
+
<input>
|
319 |
+
<port id="0" precision="FP32">
|
320 |
+
<dim>1</dim>
|
321 |
+
<dim>64</dim>
|
322 |
+
<dim>64</dim>
|
323 |
+
<dim>64</dim>
|
324 |
+
</port>
|
325 |
+
</input>
|
326 |
+
<output>
|
327 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.0/act2/Relu_output_0">
|
328 |
+
<dim>1</dim>
|
329 |
+
<dim>64</dim>
|
330 |
+
<dim>64</dim>
|
331 |
+
<dim>64</dim>
|
332 |
+
</port>
|
333 |
+
</output>
|
334 |
+
</layer>
|
335 |
+
<layer id="18" name="onnx::Conv_269" type="Const" version="opset1">
|
336 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="333312" size="147456" />
|
337 |
+
<output>
|
338 |
+
<port id="0" precision="FP32" names="onnx::Conv_269">
|
339 |
+
<dim>64</dim>
|
340 |
+
<dim>64</dim>
|
341 |
+
<dim>3</dim>
|
342 |
+
<dim>3</dim>
|
343 |
+
</port>
|
344 |
+
</output>
|
345 |
+
</layer>
|
346 |
+
<layer id="19" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
347 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
348 |
+
<input>
|
349 |
+
<port id="0" precision="FP32">
|
350 |
+
<dim>1</dim>
|
351 |
+
<dim>64</dim>
|
352 |
+
<dim>64</dim>
|
353 |
+
<dim>64</dim>
|
354 |
+
</port>
|
355 |
+
<port id="1" precision="FP32">
|
356 |
+
<dim>64</dim>
|
357 |
+
<dim>64</dim>
|
358 |
+
<dim>3</dim>
|
359 |
+
<dim>3</dim>
|
360 |
+
</port>
|
361 |
+
</input>
|
362 |
+
<output>
|
363 |
+
<port id="2" precision="FP32">
|
364 |
+
<dim>1</dim>
|
365 |
+
<dim>64</dim>
|
366 |
+
<dim>64</dim>
|
367 |
+
<dim>64</dim>
|
368 |
+
</port>
|
369 |
+
</output>
|
370 |
+
</layer>
|
371 |
+
<layer id="20" name="Reshape_204" type="Const" version="opset1">
|
372 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="480768" size="256" />
|
373 |
+
<output>
|
374 |
+
<port id="0" precision="FP32">
|
375 |
+
<dim>1</dim>
|
376 |
+
<dim>64</dim>
|
377 |
+
<dim>1</dim>
|
378 |
+
<dim>1</dim>
|
379 |
+
</port>
|
380 |
+
</output>
|
381 |
+
</layer>
|
382 |
+
<layer id="21" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv" type="Add" version="opset1">
|
383 |
+
<data auto_broadcast="numpy" />
|
384 |
+
<input>
|
385 |
+
<port id="0" precision="FP32">
|
386 |
+
<dim>1</dim>
|
387 |
+
<dim>64</dim>
|
388 |
+
<dim>64</dim>
|
389 |
+
<dim>64</dim>
|
390 |
+
</port>
|
391 |
+
<port id="1" precision="FP32">
|
392 |
+
<dim>1</dim>
|
393 |
+
<dim>64</dim>
|
394 |
+
<dim>1</dim>
|
395 |
+
<dim>1</dim>
|
396 |
+
</port>
|
397 |
+
</input>
|
398 |
+
<output>
|
399 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv1/Conv_output_0">
|
400 |
+
<dim>1</dim>
|
401 |
+
<dim>64</dim>
|
402 |
+
<dim>64</dim>
|
403 |
+
<dim>64</dim>
|
404 |
+
</port>
|
405 |
+
</output>
|
406 |
+
</layer>
|
407 |
+
<layer id="22" name="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu" type="ReLU" version="opset1">
|
408 |
+
<input>
|
409 |
+
<port id="0" precision="FP32">
|
410 |
+
<dim>1</dim>
|
411 |
+
<dim>64</dim>
|
412 |
+
<dim>64</dim>
|
413 |
+
<dim>64</dim>
|
414 |
+
</port>
|
415 |
+
</input>
|
416 |
+
<output>
|
417 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act1/Relu_output_0">
|
418 |
+
<dim>1</dim>
|
419 |
+
<dim>64</dim>
|
420 |
+
<dim>64</dim>
|
421 |
+
<dim>64</dim>
|
422 |
+
</port>
|
423 |
+
</output>
|
424 |
+
</layer>
|
425 |
+
<layer id="23" name="onnx::Conv_272" type="Const" version="opset1">
|
426 |
+
<data element_type="f32" shape="64, 64, 3, 3" offset="481024" size="147456" />
|
427 |
+
<output>
|
428 |
+
<port id="0" precision="FP32" names="onnx::Conv_272">
|
429 |
+
<dim>64</dim>
|
430 |
+
<dim>64</dim>
|
431 |
+
<dim>3</dim>
|
432 |
+
<dim>3</dim>
|
433 |
+
</port>
|
434 |
+
</output>
|
435 |
+
</layer>
|
436 |
+
<layer id="24" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
437 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
438 |
+
<input>
|
439 |
+
<port id="0" precision="FP32">
|
440 |
+
<dim>1</dim>
|
441 |
+
<dim>64</dim>
|
442 |
+
<dim>64</dim>
|
443 |
+
<dim>64</dim>
|
444 |
+
</port>
|
445 |
+
<port id="1" precision="FP32">
|
446 |
+
<dim>64</dim>
|
447 |
+
<dim>64</dim>
|
448 |
+
<dim>3</dim>
|
449 |
+
<dim>3</dim>
|
450 |
+
</port>
|
451 |
+
</input>
|
452 |
+
<output>
|
453 |
+
<port id="2" precision="FP32">
|
454 |
+
<dim>1</dim>
|
455 |
+
<dim>64</dim>
|
456 |
+
<dim>64</dim>
|
457 |
+
<dim>64</dim>
|
458 |
+
</port>
|
459 |
+
</output>
|
460 |
+
</layer>
|
461 |
+
<layer id="25" name="Reshape_253" type="Const" version="opset1">
|
462 |
+
<data element_type="f32" shape="1, 64, 1, 1" offset="628480" size="256" />
|
463 |
+
<output>
|
464 |
+
<port id="0" precision="FP32">
|
465 |
+
<dim>1</dim>
|
466 |
+
<dim>64</dim>
|
467 |
+
<dim>1</dim>
|
468 |
+
<dim>1</dim>
|
469 |
+
</port>
|
470 |
+
</output>
|
471 |
+
</layer>
|
472 |
+
<layer id="26" name="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv" type="Add" version="opset1">
|
473 |
+
<data auto_broadcast="numpy" />
|
474 |
+
<input>
|
475 |
+
<port id="0" precision="FP32">
|
476 |
+
<dim>1</dim>
|
477 |
+
<dim>64</dim>
|
478 |
+
<dim>64</dim>
|
479 |
+
<dim>64</dim>
|
480 |
+
</port>
|
481 |
+
<port id="1" precision="FP32">
|
482 |
+
<dim>1</dim>
|
483 |
+
<dim>64</dim>
|
484 |
+
<dim>1</dim>
|
485 |
+
<dim>1</dim>
|
486 |
+
</port>
|
487 |
+
</input>
|
488 |
+
<output>
|
489 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/conv2/Conv_output_0">
|
490 |
+
<dim>1</dim>
|
491 |
+
<dim>64</dim>
|
492 |
+
<dim>64</dim>
|
493 |
+
<dim>64</dim>
|
494 |
+
</port>
|
495 |
+
</output>
|
496 |
+
</layer>
|
497 |
+
<layer id="27" name="/feature_extractor/feature_extractor/layer1/layer1.1/Add" type="Add" version="opset1">
|
498 |
+
<data auto_broadcast="numpy" />
|
499 |
+
<input>
|
500 |
+
<port id="0" precision="FP32">
|
501 |
+
<dim>1</dim>
|
502 |
+
<dim>64</dim>
|
503 |
+
<dim>64</dim>
|
504 |
+
<dim>64</dim>
|
505 |
+
</port>
|
506 |
+
<port id="1" precision="FP32">
|
507 |
+
<dim>1</dim>
|
508 |
+
<dim>64</dim>
|
509 |
+
<dim>64</dim>
|
510 |
+
<dim>64</dim>
|
511 |
+
</port>
|
512 |
+
</input>
|
513 |
+
<output>
|
514 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/Add_output_0">
|
515 |
+
<dim>1</dim>
|
516 |
+
<dim>64</dim>
|
517 |
+
<dim>64</dim>
|
518 |
+
<dim>64</dim>
|
519 |
+
</port>
|
520 |
+
</output>
|
521 |
+
</layer>
|
522 |
+
<layer id="28" name="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu" type="ReLU" version="opset1">
|
523 |
+
<input>
|
524 |
+
<port id="0" precision="FP32">
|
525 |
+
<dim>1</dim>
|
526 |
+
<dim>64</dim>
|
527 |
+
<dim>64</dim>
|
528 |
+
<dim>64</dim>
|
529 |
+
</port>
|
530 |
+
</input>
|
531 |
+
<output>
|
532 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer1/layer1.1/act2/Relu_output_0">
|
533 |
+
<dim>1</dim>
|
534 |
+
<dim>64</dim>
|
535 |
+
<dim>64</dim>
|
536 |
+
<dim>64</dim>
|
537 |
+
</port>
|
538 |
+
</output>
|
539 |
+
</layer>
|
540 |
+
<layer id="29" name="onnx::Conv_275" type="Const" version="opset1">
|
541 |
+
<data element_type="f32" shape="128, 64, 3, 3" offset="628736" size="294912" />
|
542 |
+
<output>
|
543 |
+
<port id="0" precision="FP32" names="onnx::Conv_275">
|
544 |
+
<dim>128</dim>
|
545 |
+
<dim>64</dim>
|
546 |
+
<dim>3</dim>
|
547 |
+
<dim>3</dim>
|
548 |
+
</port>
|
549 |
+
</output>
|
550 |
+
</layer>
|
551 |
+
<layer id="30" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
552 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
553 |
+
<input>
|
554 |
+
<port id="0" precision="FP32">
|
555 |
+
<dim>1</dim>
|
556 |
+
<dim>64</dim>
|
557 |
+
<dim>64</dim>
|
558 |
+
<dim>64</dim>
|
559 |
+
</port>
|
560 |
+
<port id="1" precision="FP32">
|
561 |
+
<dim>128</dim>
|
562 |
+
<dim>64</dim>
|
563 |
+
<dim>3</dim>
|
564 |
+
<dim>3</dim>
|
565 |
+
</port>
|
566 |
+
</input>
|
567 |
+
<output>
|
568 |
+
<port id="2" precision="FP32">
|
569 |
+
<dim>1</dim>
|
570 |
+
<dim>128</dim>
|
571 |
+
<dim>32</dim>
|
572 |
+
<dim>32</dim>
|
573 |
+
</port>
|
574 |
+
</output>
|
575 |
+
</layer>
|
576 |
+
<layer id="31" name="Reshape_303" type="Const" version="opset1">
|
577 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="923648" size="512" />
|
578 |
+
<output>
|
579 |
+
<port id="0" precision="FP32">
|
580 |
+
<dim>1</dim>
|
581 |
+
<dim>128</dim>
|
582 |
+
<dim>1</dim>
|
583 |
+
<dim>1</dim>
|
584 |
+
</port>
|
585 |
+
</output>
|
586 |
+
</layer>
|
587 |
+
<layer id="32" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv" type="Add" version="opset1">
|
588 |
+
<data auto_broadcast="numpy" />
|
589 |
+
<input>
|
590 |
+
<port id="0" precision="FP32">
|
591 |
+
<dim>1</dim>
|
592 |
+
<dim>128</dim>
|
593 |
+
<dim>32</dim>
|
594 |
+
<dim>32</dim>
|
595 |
+
</port>
|
596 |
+
<port id="1" precision="FP32">
|
597 |
+
<dim>1</dim>
|
598 |
+
<dim>128</dim>
|
599 |
+
<dim>1</dim>
|
600 |
+
<dim>1</dim>
|
601 |
+
</port>
|
602 |
+
</input>
|
603 |
+
<output>
|
604 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv1/Conv_output_0">
|
605 |
+
<dim>1</dim>
|
606 |
+
<dim>128</dim>
|
607 |
+
<dim>32</dim>
|
608 |
+
<dim>32</dim>
|
609 |
+
</port>
|
610 |
+
</output>
|
611 |
+
</layer>
|
612 |
+
<layer id="33" name="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu" type="ReLU" version="opset1">
|
613 |
+
<input>
|
614 |
+
<port id="0" precision="FP32">
|
615 |
+
<dim>1</dim>
|
616 |
+
<dim>128</dim>
|
617 |
+
<dim>32</dim>
|
618 |
+
<dim>32</dim>
|
619 |
+
</port>
|
620 |
+
</input>
|
621 |
+
<output>
|
622 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act1/Relu_output_0">
|
623 |
+
<dim>1</dim>
|
624 |
+
<dim>128</dim>
|
625 |
+
<dim>32</dim>
|
626 |
+
<dim>32</dim>
|
627 |
+
</port>
|
628 |
+
</output>
|
629 |
+
</layer>
|
630 |
+
<layer id="34" name="onnx::Conv_278" type="Const" version="opset1">
|
631 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="924160" size="589824" />
|
632 |
+
<output>
|
633 |
+
<port id="0" precision="FP32" names="onnx::Conv_278">
|
634 |
+
<dim>128</dim>
|
635 |
+
<dim>128</dim>
|
636 |
+
<dim>3</dim>
|
637 |
+
<dim>3</dim>
|
638 |
+
</port>
|
639 |
+
</output>
|
640 |
+
</layer>
|
641 |
+
<layer id="35" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
642 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
643 |
+
<input>
|
644 |
+
<port id="0" precision="FP32">
|
645 |
+
<dim>1</dim>
|
646 |
+
<dim>128</dim>
|
647 |
+
<dim>32</dim>
|
648 |
+
<dim>32</dim>
|
649 |
+
</port>
|
650 |
+
<port id="1" precision="FP32">
|
651 |
+
<dim>128</dim>
|
652 |
+
<dim>128</dim>
|
653 |
+
<dim>3</dim>
|
654 |
+
<dim>3</dim>
|
655 |
+
</port>
|
656 |
+
</input>
|
657 |
+
<output>
|
658 |
+
<port id="2" precision="FP32">
|
659 |
+
<dim>1</dim>
|
660 |
+
<dim>128</dim>
|
661 |
+
<dim>32</dim>
|
662 |
+
<dim>32</dim>
|
663 |
+
</port>
|
664 |
+
</output>
|
665 |
+
</layer>
|
666 |
+
<layer id="36" name="Reshape_352" type="Const" version="opset1">
|
667 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1513984" size="512" />
|
668 |
+
<output>
|
669 |
+
<port id="0" precision="FP32">
|
670 |
+
<dim>1</dim>
|
671 |
+
<dim>128</dim>
|
672 |
+
<dim>1</dim>
|
673 |
+
<dim>1</dim>
|
674 |
+
</port>
|
675 |
+
</output>
|
676 |
+
</layer>
|
677 |
+
<layer id="37" name="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv" type="Add" version="opset1">
|
678 |
+
<data auto_broadcast="numpy" />
|
679 |
+
<input>
|
680 |
+
<port id="0" precision="FP32">
|
681 |
+
<dim>1</dim>
|
682 |
+
<dim>128</dim>
|
683 |
+
<dim>32</dim>
|
684 |
+
<dim>32</dim>
|
685 |
+
</port>
|
686 |
+
<port id="1" precision="FP32">
|
687 |
+
<dim>1</dim>
|
688 |
+
<dim>128</dim>
|
689 |
+
<dim>1</dim>
|
690 |
+
<dim>1</dim>
|
691 |
+
</port>
|
692 |
+
</input>
|
693 |
+
<output>
|
694 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/conv2/Conv_output_0">
|
695 |
+
<dim>1</dim>
|
696 |
+
<dim>128</dim>
|
697 |
+
<dim>32</dim>
|
698 |
+
<dim>32</dim>
|
699 |
+
</port>
|
700 |
+
</output>
|
701 |
+
</layer>
|
702 |
+
<layer id="38" name="onnx::Conv_281" type="Const" version="opset1">
|
703 |
+
<data element_type="f32" shape="128, 64, 1, 1" offset="1514496" size="32768" />
|
704 |
+
<output>
|
705 |
+
<port id="0" precision="FP32" names="onnx::Conv_281">
|
706 |
+
<dim>128</dim>
|
707 |
+
<dim>64</dim>
|
708 |
+
<dim>1</dim>
|
709 |
+
<dim>1</dim>
|
710 |
+
</port>
|
711 |
+
</output>
|
712 |
+
</layer>
|
713 |
+
<layer id="39" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
714 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
715 |
+
<input>
|
716 |
+
<port id="0" precision="FP32">
|
717 |
+
<dim>1</dim>
|
718 |
+
<dim>64</dim>
|
719 |
+
<dim>64</dim>
|
720 |
+
<dim>64</dim>
|
721 |
+
</port>
|
722 |
+
<port id="1" precision="FP32">
|
723 |
+
<dim>128</dim>
|
724 |
+
<dim>64</dim>
|
725 |
+
<dim>1</dim>
|
726 |
+
<dim>1</dim>
|
727 |
+
</port>
|
728 |
+
</input>
|
729 |
+
<output>
|
730 |
+
<port id="2" precision="FP32">
|
731 |
+
<dim>1</dim>
|
732 |
+
<dim>128</dim>
|
733 |
+
<dim>32</dim>
|
734 |
+
<dim>32</dim>
|
735 |
+
</port>
|
736 |
+
</output>
|
737 |
+
</layer>
|
738 |
+
<layer id="40" name="Reshape_400" type="Const" version="opset1">
|
739 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="1547264" size="512" />
|
740 |
+
<output>
|
741 |
+
<port id="0" precision="FP32">
|
742 |
+
<dim>1</dim>
|
743 |
+
<dim>128</dim>
|
744 |
+
<dim>1</dim>
|
745 |
+
<dim>1</dim>
|
746 |
+
</port>
|
747 |
+
</output>
|
748 |
+
</layer>
|
749 |
+
<layer id="41" name="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
750 |
+
<data auto_broadcast="numpy" />
|
751 |
+
<input>
|
752 |
+
<port id="0" precision="FP32">
|
753 |
+
<dim>1</dim>
|
754 |
+
<dim>128</dim>
|
755 |
+
<dim>32</dim>
|
756 |
+
<dim>32</dim>
|
757 |
+
</port>
|
758 |
+
<port id="1" precision="FP32">
|
759 |
+
<dim>1</dim>
|
760 |
+
<dim>128</dim>
|
761 |
+
<dim>1</dim>
|
762 |
+
<dim>1</dim>
|
763 |
+
</port>
|
764 |
+
</input>
|
765 |
+
<output>
|
766 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/downsample/downsample.0/Conv_output_0">
|
767 |
+
<dim>1</dim>
|
768 |
+
<dim>128</dim>
|
769 |
+
<dim>32</dim>
|
770 |
+
<dim>32</dim>
|
771 |
+
</port>
|
772 |
+
</output>
|
773 |
+
</layer>
|
774 |
+
<layer id="42" name="/feature_extractor/feature_extractor/layer2/layer2.0/Add" type="Add" version="opset1">
|
775 |
+
<data auto_broadcast="numpy" />
|
776 |
+
<input>
|
777 |
+
<port id="0" precision="FP32">
|
778 |
+
<dim>1</dim>
|
779 |
+
<dim>128</dim>
|
780 |
+
<dim>32</dim>
|
781 |
+
<dim>32</dim>
|
782 |
+
</port>
|
783 |
+
<port id="1" precision="FP32">
|
784 |
+
<dim>1</dim>
|
785 |
+
<dim>128</dim>
|
786 |
+
<dim>32</dim>
|
787 |
+
<dim>32</dim>
|
788 |
+
</port>
|
789 |
+
</input>
|
790 |
+
<output>
|
791 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/Add_output_0">
|
792 |
+
<dim>1</dim>
|
793 |
+
<dim>128</dim>
|
794 |
+
<dim>32</dim>
|
795 |
+
<dim>32</dim>
|
796 |
+
</port>
|
797 |
+
</output>
|
798 |
+
</layer>
|
799 |
+
<layer id="43" name="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu" type="ReLU" version="opset1">
|
800 |
+
<input>
|
801 |
+
<port id="0" precision="FP32">
|
802 |
+
<dim>1</dim>
|
803 |
+
<dim>128</dim>
|
804 |
+
<dim>32</dim>
|
805 |
+
<dim>32</dim>
|
806 |
+
</port>
|
807 |
+
</input>
|
808 |
+
<output>
|
809 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.0/act2/Relu_output_0">
|
810 |
+
<dim>1</dim>
|
811 |
+
<dim>128</dim>
|
812 |
+
<dim>32</dim>
|
813 |
+
<dim>32</dim>
|
814 |
+
</port>
|
815 |
+
</output>
|
816 |
+
</layer>
|
817 |
+
<layer id="44" name="onnx::Conv_284" type="Const" version="opset1">
|
818 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="1547776" size="589824" />
|
819 |
+
<output>
|
820 |
+
<port id="0" precision="FP32" names="onnx::Conv_284">
|
821 |
+
<dim>128</dim>
|
822 |
+
<dim>128</dim>
|
823 |
+
<dim>3</dim>
|
824 |
+
<dim>3</dim>
|
825 |
+
</port>
|
826 |
+
</output>
|
827 |
+
</layer>
|
828 |
+
<layer id="45" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
829 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
830 |
+
<input>
|
831 |
+
<port id="0" precision="FP32">
|
832 |
+
<dim>1</dim>
|
833 |
+
<dim>128</dim>
|
834 |
+
<dim>32</dim>
|
835 |
+
<dim>32</dim>
|
836 |
+
</port>
|
837 |
+
<port id="1" precision="FP32">
|
838 |
+
<dim>128</dim>
|
839 |
+
<dim>128</dim>
|
840 |
+
<dim>3</dim>
|
841 |
+
<dim>3</dim>
|
842 |
+
</port>
|
843 |
+
</input>
|
844 |
+
<output>
|
845 |
+
<port id="2" precision="FP32">
|
846 |
+
<dim>1</dim>
|
847 |
+
<dim>128</dim>
|
848 |
+
<dim>32</dim>
|
849 |
+
<dim>32</dim>
|
850 |
+
</port>
|
851 |
+
</output>
|
852 |
+
</layer>
|
853 |
+
<layer id="46" name="Reshape_450" type="Const" version="opset1">
|
854 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2137600" size="512" />
|
855 |
+
<output>
|
856 |
+
<port id="0" precision="FP32">
|
857 |
+
<dim>1</dim>
|
858 |
+
<dim>128</dim>
|
859 |
+
<dim>1</dim>
|
860 |
+
<dim>1</dim>
|
861 |
+
</port>
|
862 |
+
</output>
|
863 |
+
</layer>
|
864 |
+
<layer id="47" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv" type="Add" version="opset1">
|
865 |
+
<data auto_broadcast="numpy" />
|
866 |
+
<input>
|
867 |
+
<port id="0" precision="FP32">
|
868 |
+
<dim>1</dim>
|
869 |
+
<dim>128</dim>
|
870 |
+
<dim>32</dim>
|
871 |
+
<dim>32</dim>
|
872 |
+
</port>
|
873 |
+
<port id="1" precision="FP32">
|
874 |
+
<dim>1</dim>
|
875 |
+
<dim>128</dim>
|
876 |
+
<dim>1</dim>
|
877 |
+
<dim>1</dim>
|
878 |
+
</port>
|
879 |
+
</input>
|
880 |
+
<output>
|
881 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv1/Conv_output_0">
|
882 |
+
<dim>1</dim>
|
883 |
+
<dim>128</dim>
|
884 |
+
<dim>32</dim>
|
885 |
+
<dim>32</dim>
|
886 |
+
</port>
|
887 |
+
</output>
|
888 |
+
</layer>
|
889 |
+
<layer id="48" name="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu" type="ReLU" version="opset1">
|
890 |
+
<input>
|
891 |
+
<port id="0" precision="FP32">
|
892 |
+
<dim>1</dim>
|
893 |
+
<dim>128</dim>
|
894 |
+
<dim>32</dim>
|
895 |
+
<dim>32</dim>
|
896 |
+
</port>
|
897 |
+
</input>
|
898 |
+
<output>
|
899 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act1/Relu_output_0">
|
900 |
+
<dim>1</dim>
|
901 |
+
<dim>128</dim>
|
902 |
+
<dim>32</dim>
|
903 |
+
<dim>32</dim>
|
904 |
+
</port>
|
905 |
+
</output>
|
906 |
+
</layer>
|
907 |
+
<layer id="49" name="onnx::Conv_287" type="Const" version="opset1">
|
908 |
+
<data element_type="f32" shape="128, 128, 3, 3" offset="2138112" size="589824" />
|
909 |
+
<output>
|
910 |
+
<port id="0" precision="FP32" names="onnx::Conv_287">
|
911 |
+
<dim>128</dim>
|
912 |
+
<dim>128</dim>
|
913 |
+
<dim>3</dim>
|
914 |
+
<dim>3</dim>
|
915 |
+
</port>
|
916 |
+
</output>
|
917 |
+
</layer>
|
918 |
+
<layer id="50" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
919 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
920 |
+
<input>
|
921 |
+
<port id="0" precision="FP32">
|
922 |
+
<dim>1</dim>
|
923 |
+
<dim>128</dim>
|
924 |
+
<dim>32</dim>
|
925 |
+
<dim>32</dim>
|
926 |
+
</port>
|
927 |
+
<port id="1" precision="FP32">
|
928 |
+
<dim>128</dim>
|
929 |
+
<dim>128</dim>
|
930 |
+
<dim>3</dim>
|
931 |
+
<dim>3</dim>
|
932 |
+
</port>
|
933 |
+
</input>
|
934 |
+
<output>
|
935 |
+
<port id="2" precision="FP32">
|
936 |
+
<dim>1</dim>
|
937 |
+
<dim>128</dim>
|
938 |
+
<dim>32</dim>
|
939 |
+
<dim>32</dim>
|
940 |
+
</port>
|
941 |
+
</output>
|
942 |
+
</layer>
|
943 |
+
<layer id="51" name="Reshape_499" type="Const" version="opset1">
|
944 |
+
<data element_type="f32" shape="1, 128, 1, 1" offset="2727936" size="512" />
|
945 |
+
<output>
|
946 |
+
<port id="0" precision="FP32">
|
947 |
+
<dim>1</dim>
|
948 |
+
<dim>128</dim>
|
949 |
+
<dim>1</dim>
|
950 |
+
<dim>1</dim>
|
951 |
+
</port>
|
952 |
+
</output>
|
953 |
+
</layer>
|
954 |
+
<layer id="52" name="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv" type="Add" version="opset1">
|
955 |
+
<data auto_broadcast="numpy" />
|
956 |
+
<input>
|
957 |
+
<port id="0" precision="FP32">
|
958 |
+
<dim>1</dim>
|
959 |
+
<dim>128</dim>
|
960 |
+
<dim>32</dim>
|
961 |
+
<dim>32</dim>
|
962 |
+
</port>
|
963 |
+
<port id="1" precision="FP32">
|
964 |
+
<dim>1</dim>
|
965 |
+
<dim>128</dim>
|
966 |
+
<dim>1</dim>
|
967 |
+
<dim>1</dim>
|
968 |
+
</port>
|
969 |
+
</input>
|
970 |
+
<output>
|
971 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/conv2/Conv_output_0">
|
972 |
+
<dim>1</dim>
|
973 |
+
<dim>128</dim>
|
974 |
+
<dim>32</dim>
|
975 |
+
<dim>32</dim>
|
976 |
+
</port>
|
977 |
+
</output>
|
978 |
+
</layer>
|
979 |
+
<layer id="53" name="/feature_extractor/feature_extractor/layer2/layer2.1/Add" type="Add" version="opset1">
|
980 |
+
<data auto_broadcast="numpy" />
|
981 |
+
<input>
|
982 |
+
<port id="0" precision="FP32">
|
983 |
+
<dim>1</dim>
|
984 |
+
<dim>128</dim>
|
985 |
+
<dim>32</dim>
|
986 |
+
<dim>32</dim>
|
987 |
+
</port>
|
988 |
+
<port id="1" precision="FP32">
|
989 |
+
<dim>1</dim>
|
990 |
+
<dim>128</dim>
|
991 |
+
<dim>32</dim>
|
992 |
+
<dim>32</dim>
|
993 |
+
</port>
|
994 |
+
</input>
|
995 |
+
<output>
|
996 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/Add_output_0">
|
997 |
+
<dim>1</dim>
|
998 |
+
<dim>128</dim>
|
999 |
+
<dim>32</dim>
|
1000 |
+
<dim>32</dim>
|
1001 |
+
</port>
|
1002 |
+
</output>
|
1003 |
+
</layer>
|
1004 |
+
<layer id="54" name="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu" type="ReLU" version="opset1">
|
1005 |
+
<input>
|
1006 |
+
<port id="0" precision="FP32">
|
1007 |
+
<dim>1</dim>
|
1008 |
+
<dim>128</dim>
|
1009 |
+
<dim>32</dim>
|
1010 |
+
<dim>32</dim>
|
1011 |
+
</port>
|
1012 |
+
</input>
|
1013 |
+
<output>
|
1014 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer2/layer2.1/act2/Relu_output_0">
|
1015 |
+
<dim>1</dim>
|
1016 |
+
<dim>128</dim>
|
1017 |
+
<dim>32</dim>
|
1018 |
+
<dim>32</dim>
|
1019 |
+
</port>
|
1020 |
+
</output>
|
1021 |
+
</layer>
|
1022 |
+
<layer id="55" name="/Shape" type="ShapeOf" version="opset3">
|
1023 |
+
<data output_type="i64" />
|
1024 |
+
<input>
|
1025 |
+
<port id="0" precision="FP32">
|
1026 |
+
<dim>1</dim>
|
1027 |
+
<dim>128</dim>
|
1028 |
+
<dim>32</dim>
|
1029 |
+
<dim>32</dim>
|
1030 |
+
</port>
|
1031 |
+
</input>
|
1032 |
+
<output>
|
1033 |
+
<port id="1" precision="I64" names="/Shape_output_0">
|
1034 |
+
<dim>4</dim>
|
1035 |
+
</port>
|
1036 |
+
</output>
|
1037 |
+
</layer>
|
1038 |
+
<layer id="56" name="/Constant_1" type="Const" version="opset1">
|
1039 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1040 |
+
<output>
|
1041 |
+
<port id="0" precision="I64" names="/Constant_1_output_0">
|
1042 |
+
<dim>1</dim>
|
1043 |
+
</port>
|
1044 |
+
</output>
|
1045 |
+
</layer>
|
1046 |
+
<layer id="57" name="/Constant_2" type="Const" version="opset1">
|
1047 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1048 |
+
<output>
|
1049 |
+
<port id="0" precision="I64" names="/Constant_2_output_0">
|
1050 |
+
<dim>1</dim>
|
1051 |
+
</port>
|
1052 |
+
</output>
|
1053 |
+
</layer>
|
1054 |
+
<layer id="58" name="Broadcast_781" type="Const" version="opset1">
|
1055 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1056 |
+
<output>
|
1057 |
+
<port id="0" precision="I64">
|
1058 |
+
<dim>1</dim>
|
1059 |
+
</port>
|
1060 |
+
</output>
|
1061 |
+
</layer>
|
1062 |
+
<layer id="59" name="/Slice" type="StridedSlice" version="opset1">
|
1063 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1064 |
+
<input>
|
1065 |
+
<port id="0" precision="I64">
|
1066 |
+
<dim>4</dim>
|
1067 |
+
</port>
|
1068 |
+
<port id="1" precision="I64">
|
1069 |
+
<dim>1</dim>
|
1070 |
+
</port>
|
1071 |
+
<port id="2" precision="I64">
|
1072 |
+
<dim>1</dim>
|
1073 |
+
</port>
|
1074 |
+
<port id="3" precision="I64">
|
1075 |
+
<dim>1</dim>
|
1076 |
+
</port>
|
1077 |
+
</input>
|
1078 |
+
<output>
|
1079 |
+
<port id="4" precision="I64" names="/Slice_output_0">
|
1080 |
+
<dim>2</dim>
|
1081 |
+
</port>
|
1082 |
+
</output>
|
1083 |
+
</layer>
|
1084 |
+
<layer id="60" name="/Constant_3" type="Const" version="opset1">
|
1085 |
+
<data element_type="i64" shape="2" offset="2728472" size="16" />
|
1086 |
+
<output>
|
1087 |
+
<port id="0" precision="I64" names="/Constant_3_output_0">
|
1088 |
+
<dim>2</dim>
|
1089 |
+
</port>
|
1090 |
+
</output>
|
1091 |
+
</layer>
|
1092 |
+
<layer id="61" name="/Concat" type="Concat" version="opset1">
|
1093 |
+
<data axis="0" />
|
1094 |
+
<input>
|
1095 |
+
<port id="0" precision="I64">
|
1096 |
+
<dim>2</dim>
|
1097 |
+
</port>
|
1098 |
+
<port id="1" precision="I64">
|
1099 |
+
<dim>2</dim>
|
1100 |
+
</port>
|
1101 |
+
</input>
|
1102 |
+
<output>
|
1103 |
+
<port id="2" precision="I64" names="/Concat_output_0">
|
1104 |
+
<dim>4</dim>
|
1105 |
+
</port>
|
1106 |
+
</output>
|
1107 |
+
</layer>
|
1108 |
+
<layer id="62" name="Convert_804" type="Convert" version="opset1">
|
1109 |
+
<data destination_type="f32" />
|
1110 |
+
<input>
|
1111 |
+
<port id="0" precision="I64">
|
1112 |
+
<dim>4</dim>
|
1113 |
+
</port>
|
1114 |
+
</input>
|
1115 |
+
<output>
|
1116 |
+
<port id="1" precision="FP32">
|
1117 |
+
<dim>4</dim>
|
1118 |
+
</port>
|
1119 |
+
</output>
|
1120 |
+
</layer>
|
1121 |
+
<layer id="63" name="Convert_803" type="Convert" version="opset1">
|
1122 |
+
<data destination_type="f32" />
|
1123 |
+
<input>
|
1124 |
+
<port id="0" precision="I64">
|
1125 |
+
<dim>4</dim>
|
1126 |
+
</port>
|
1127 |
+
</input>
|
1128 |
+
<output>
|
1129 |
+
<port id="1" precision="FP32">
|
1130 |
+
<dim>4</dim>
|
1131 |
+
</port>
|
1132 |
+
</output>
|
1133 |
+
</layer>
|
1134 |
+
<layer id="64" name="Divide_805" type="Divide" version="opset1">
|
1135 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1136 |
+
<input>
|
1137 |
+
<port id="0" precision="FP32">
|
1138 |
+
<dim>4</dim>
|
1139 |
+
</port>
|
1140 |
+
<port id="1" precision="FP32">
|
1141 |
+
<dim>4</dim>
|
1142 |
+
</port>
|
1143 |
+
</input>
|
1144 |
+
<output>
|
1145 |
+
<port id="2" precision="FP32">
|
1146 |
+
<dim>4</dim>
|
1147 |
+
</port>
|
1148 |
+
</output>
|
1149 |
+
</layer>
|
1150 |
+
<layer id="65" name="Constant_6582" type="Const" version="opset1">
|
1151 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1152 |
+
<output>
|
1153 |
+
<port id="0" precision="FP32">
|
1154 |
+
<dim>1</dim>
|
1155 |
+
</port>
|
1156 |
+
</output>
|
1157 |
+
</layer>
|
1158 |
+
<layer id="66" name="Add_807" type="Add" version="opset1">
|
1159 |
+
<data auto_broadcast="numpy" />
|
1160 |
+
<input>
|
1161 |
+
<port id="0" precision="FP32">
|
1162 |
+
<dim>4</dim>
|
1163 |
+
</port>
|
1164 |
+
<port id="1" precision="FP32">
|
1165 |
+
<dim>1</dim>
|
1166 |
+
</port>
|
1167 |
+
</input>
|
1168 |
+
<output>
|
1169 |
+
<port id="2" precision="FP32">
|
1170 |
+
<dim>4</dim>
|
1171 |
+
</port>
|
1172 |
+
</output>
|
1173 |
+
</layer>
|
1174 |
+
<layer id="67" name="/Resize" type="Interpolate" version="opset4">
|
1175 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1176 |
+
<input>
|
1177 |
+
<port id="0" precision="FP32">
|
1178 |
+
<dim>1</dim>
|
1179 |
+
<dim>128</dim>
|
1180 |
+
<dim>32</dim>
|
1181 |
+
<dim>32</dim>
|
1182 |
+
</port>
|
1183 |
+
<port id="1" precision="I64">
|
1184 |
+
<dim>4</dim>
|
1185 |
+
</port>
|
1186 |
+
<port id="2" precision="FP32">
|
1187 |
+
<dim>4</dim>
|
1188 |
+
</port>
|
1189 |
+
</input>
|
1190 |
+
<output>
|
1191 |
+
<port id="3" precision="FP32" names="/Resize_output_0">
|
1192 |
+
<dim>1</dim>
|
1193 |
+
<dim>128</dim>
|
1194 |
+
<dim>64</dim>
|
1195 |
+
<dim>64</dim>
|
1196 |
+
</port>
|
1197 |
+
</output>
|
1198 |
+
</layer>
|
1199 |
+
<layer id="68" name="/Concat_1" type="Concat" version="opset1">
|
1200 |
+
<data axis="1" />
|
1201 |
+
<input>
|
1202 |
+
<port id="0" precision="FP32">
|
1203 |
+
<dim>1</dim>
|
1204 |
+
<dim>64</dim>
|
1205 |
+
<dim>64</dim>
|
1206 |
+
<dim>64</dim>
|
1207 |
+
</port>
|
1208 |
+
<port id="1" precision="FP32">
|
1209 |
+
<dim>1</dim>
|
1210 |
+
<dim>128</dim>
|
1211 |
+
<dim>64</dim>
|
1212 |
+
<dim>64</dim>
|
1213 |
+
</port>
|
1214 |
+
</input>
|
1215 |
+
<output>
|
1216 |
+
<port id="2" precision="FP32" names="/Concat_1_output_0">
|
1217 |
+
<dim>1</dim>
|
1218 |
+
<dim>192</dim>
|
1219 |
+
<dim>64</dim>
|
1220 |
+
<dim>64</dim>
|
1221 |
+
</port>
|
1222 |
+
</output>
|
1223 |
+
</layer>
|
1224 |
+
<layer id="69" name="onnx::Conv_290" type="Const" version="opset1">
|
1225 |
+
<data element_type="f32" shape="256, 128, 3, 3" offset="2728492" size="1179648" />
|
1226 |
+
<output>
|
1227 |
+
<port id="0" precision="FP32" names="onnx::Conv_290">
|
1228 |
+
<dim>256</dim>
|
1229 |
+
<dim>128</dim>
|
1230 |
+
<dim>3</dim>
|
1231 |
+
<dim>3</dim>
|
1232 |
+
</port>
|
1233 |
+
</output>
|
1234 |
+
</layer>
|
1235 |
+
<layer id="70" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1236 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1237 |
+
<input>
|
1238 |
+
<port id="0" precision="FP32">
|
1239 |
+
<dim>1</dim>
|
1240 |
+
<dim>128</dim>
|
1241 |
+
<dim>32</dim>
|
1242 |
+
<dim>32</dim>
|
1243 |
+
</port>
|
1244 |
+
<port id="1" precision="FP32">
|
1245 |
+
<dim>256</dim>
|
1246 |
+
<dim>128</dim>
|
1247 |
+
<dim>3</dim>
|
1248 |
+
<dim>3</dim>
|
1249 |
+
</port>
|
1250 |
+
</input>
|
1251 |
+
<output>
|
1252 |
+
<port id="2" precision="FP32">
|
1253 |
+
<dim>1</dim>
|
1254 |
+
<dim>256</dim>
|
1255 |
+
<dim>16</dim>
|
1256 |
+
<dim>16</dim>
|
1257 |
+
</port>
|
1258 |
+
</output>
|
1259 |
+
</layer>
|
1260 |
+
<layer id="71" name="Reshape_549" type="Const" version="opset1">
|
1261 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="3908140" size="1024" />
|
1262 |
+
<output>
|
1263 |
+
<port id="0" precision="FP32">
|
1264 |
+
<dim>1</dim>
|
1265 |
+
<dim>256</dim>
|
1266 |
+
<dim>1</dim>
|
1267 |
+
<dim>1</dim>
|
1268 |
+
</port>
|
1269 |
+
</output>
|
1270 |
+
</layer>
|
1271 |
+
<layer id="72" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv" type="Add" version="opset1">
|
1272 |
+
<data auto_broadcast="numpy" />
|
1273 |
+
<input>
|
1274 |
+
<port id="0" precision="FP32">
|
1275 |
+
<dim>1</dim>
|
1276 |
+
<dim>256</dim>
|
1277 |
+
<dim>16</dim>
|
1278 |
+
<dim>16</dim>
|
1279 |
+
</port>
|
1280 |
+
<port id="1" precision="FP32">
|
1281 |
+
<dim>1</dim>
|
1282 |
+
<dim>256</dim>
|
1283 |
+
<dim>1</dim>
|
1284 |
+
<dim>1</dim>
|
1285 |
+
</port>
|
1286 |
+
</input>
|
1287 |
+
<output>
|
1288 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv1/Conv_output_0">
|
1289 |
+
<dim>1</dim>
|
1290 |
+
<dim>256</dim>
|
1291 |
+
<dim>16</dim>
|
1292 |
+
<dim>16</dim>
|
1293 |
+
</port>
|
1294 |
+
</output>
|
1295 |
+
</layer>
|
1296 |
+
<layer id="73" name="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu" type="ReLU" version="opset1">
|
1297 |
+
<input>
|
1298 |
+
<port id="0" precision="FP32">
|
1299 |
+
<dim>1</dim>
|
1300 |
+
<dim>256</dim>
|
1301 |
+
<dim>16</dim>
|
1302 |
+
<dim>16</dim>
|
1303 |
+
</port>
|
1304 |
+
</input>
|
1305 |
+
<output>
|
1306 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act1/Relu_output_0">
|
1307 |
+
<dim>1</dim>
|
1308 |
+
<dim>256</dim>
|
1309 |
+
<dim>16</dim>
|
1310 |
+
<dim>16</dim>
|
1311 |
+
</port>
|
1312 |
+
</output>
|
1313 |
+
</layer>
|
1314 |
+
<layer id="74" name="onnx::Conv_293" type="Const" version="opset1">
|
1315 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="3909164" size="2359296" />
|
1316 |
+
<output>
|
1317 |
+
<port id="0" precision="FP32" names="onnx::Conv_293">
|
1318 |
+
<dim>256</dim>
|
1319 |
+
<dim>256</dim>
|
1320 |
+
<dim>3</dim>
|
1321 |
+
<dim>3</dim>
|
1322 |
+
</port>
|
1323 |
+
</output>
|
1324 |
+
</layer>
|
1325 |
+
<layer id="75" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1326 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1327 |
+
<input>
|
1328 |
+
<port id="0" precision="FP32">
|
1329 |
+
<dim>1</dim>
|
1330 |
+
<dim>256</dim>
|
1331 |
+
<dim>16</dim>
|
1332 |
+
<dim>16</dim>
|
1333 |
+
</port>
|
1334 |
+
<port id="1" precision="FP32">
|
1335 |
+
<dim>256</dim>
|
1336 |
+
<dim>256</dim>
|
1337 |
+
<dim>3</dim>
|
1338 |
+
<dim>3</dim>
|
1339 |
+
</port>
|
1340 |
+
</input>
|
1341 |
+
<output>
|
1342 |
+
<port id="2" precision="FP32">
|
1343 |
+
<dim>1</dim>
|
1344 |
+
<dim>256</dim>
|
1345 |
+
<dim>16</dim>
|
1346 |
+
<dim>16</dim>
|
1347 |
+
</port>
|
1348 |
+
</output>
|
1349 |
+
</layer>
|
1350 |
+
<layer id="76" name="Reshape_598" type="Const" version="opset1">
|
1351 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6268460" size="1024" />
|
1352 |
+
<output>
|
1353 |
+
<port id="0" precision="FP32">
|
1354 |
+
<dim>1</dim>
|
1355 |
+
<dim>256</dim>
|
1356 |
+
<dim>1</dim>
|
1357 |
+
<dim>1</dim>
|
1358 |
+
</port>
|
1359 |
+
</output>
|
1360 |
+
</layer>
|
1361 |
+
<layer id="77" name="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv" type="Add" version="opset1">
|
1362 |
+
<data auto_broadcast="numpy" />
|
1363 |
+
<input>
|
1364 |
+
<port id="0" precision="FP32">
|
1365 |
+
<dim>1</dim>
|
1366 |
+
<dim>256</dim>
|
1367 |
+
<dim>16</dim>
|
1368 |
+
<dim>16</dim>
|
1369 |
+
</port>
|
1370 |
+
<port id="1" precision="FP32">
|
1371 |
+
<dim>1</dim>
|
1372 |
+
<dim>256</dim>
|
1373 |
+
<dim>1</dim>
|
1374 |
+
<dim>1</dim>
|
1375 |
+
</port>
|
1376 |
+
</input>
|
1377 |
+
<output>
|
1378 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/conv2/Conv_output_0">
|
1379 |
+
<dim>1</dim>
|
1380 |
+
<dim>256</dim>
|
1381 |
+
<dim>16</dim>
|
1382 |
+
<dim>16</dim>
|
1383 |
+
</port>
|
1384 |
+
</output>
|
1385 |
+
</layer>
|
1386 |
+
<layer id="78" name="onnx::Conv_296" type="Const" version="opset1">
|
1387 |
+
<data element_type="f32" shape="256, 128, 1, 1" offset="6269484" size="131072" />
|
1388 |
+
<output>
|
1389 |
+
<port id="0" precision="FP32" names="onnx::Conv_296">
|
1390 |
+
<dim>256</dim>
|
1391 |
+
<dim>128</dim>
|
1392 |
+
<dim>1</dim>
|
1393 |
+
<dim>1</dim>
|
1394 |
+
</port>
|
1395 |
+
</output>
|
1396 |
+
</layer>
|
1397 |
+
<layer id="79" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1398 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
1399 |
+
<input>
|
1400 |
+
<port id="0" precision="FP32">
|
1401 |
+
<dim>1</dim>
|
1402 |
+
<dim>128</dim>
|
1403 |
+
<dim>32</dim>
|
1404 |
+
<dim>32</dim>
|
1405 |
+
</port>
|
1406 |
+
<port id="1" precision="FP32">
|
1407 |
+
<dim>256</dim>
|
1408 |
+
<dim>128</dim>
|
1409 |
+
<dim>1</dim>
|
1410 |
+
<dim>1</dim>
|
1411 |
+
</port>
|
1412 |
+
</input>
|
1413 |
+
<output>
|
1414 |
+
<port id="2" precision="FP32">
|
1415 |
+
<dim>1</dim>
|
1416 |
+
<dim>256</dim>
|
1417 |
+
<dim>16</dim>
|
1418 |
+
<dim>16</dim>
|
1419 |
+
</port>
|
1420 |
+
</output>
|
1421 |
+
</layer>
|
1422 |
+
<layer id="80" name="Reshape_646" type="Const" version="opset1">
|
1423 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="6400556" size="1024" />
|
1424 |
+
<output>
|
1425 |
+
<port id="0" precision="FP32">
|
1426 |
+
<dim>1</dim>
|
1427 |
+
<dim>256</dim>
|
1428 |
+
<dim>1</dim>
|
1429 |
+
<dim>1</dim>
|
1430 |
+
</port>
|
1431 |
+
</output>
|
1432 |
+
</layer>
|
1433 |
+
<layer id="81" name="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv" type="Add" version="opset1">
|
1434 |
+
<data auto_broadcast="numpy" />
|
1435 |
+
<input>
|
1436 |
+
<port id="0" precision="FP32">
|
1437 |
+
<dim>1</dim>
|
1438 |
+
<dim>256</dim>
|
1439 |
+
<dim>16</dim>
|
1440 |
+
<dim>16</dim>
|
1441 |
+
</port>
|
1442 |
+
<port id="1" precision="FP32">
|
1443 |
+
<dim>1</dim>
|
1444 |
+
<dim>256</dim>
|
1445 |
+
<dim>1</dim>
|
1446 |
+
<dim>1</dim>
|
1447 |
+
</port>
|
1448 |
+
</input>
|
1449 |
+
<output>
|
1450 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/downsample/downsample.0/Conv_output_0">
|
1451 |
+
<dim>1</dim>
|
1452 |
+
<dim>256</dim>
|
1453 |
+
<dim>16</dim>
|
1454 |
+
<dim>16</dim>
|
1455 |
+
</port>
|
1456 |
+
</output>
|
1457 |
+
</layer>
|
1458 |
+
<layer id="82" name="/feature_extractor/feature_extractor/layer3/layer3.0/Add" type="Add" version="opset1">
|
1459 |
+
<data auto_broadcast="numpy" />
|
1460 |
+
<input>
|
1461 |
+
<port id="0" precision="FP32">
|
1462 |
+
<dim>1</dim>
|
1463 |
+
<dim>256</dim>
|
1464 |
+
<dim>16</dim>
|
1465 |
+
<dim>16</dim>
|
1466 |
+
</port>
|
1467 |
+
<port id="1" precision="FP32">
|
1468 |
+
<dim>1</dim>
|
1469 |
+
<dim>256</dim>
|
1470 |
+
<dim>16</dim>
|
1471 |
+
<dim>16</dim>
|
1472 |
+
</port>
|
1473 |
+
</input>
|
1474 |
+
<output>
|
1475 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/Add_output_0">
|
1476 |
+
<dim>1</dim>
|
1477 |
+
<dim>256</dim>
|
1478 |
+
<dim>16</dim>
|
1479 |
+
<dim>16</dim>
|
1480 |
+
</port>
|
1481 |
+
</output>
|
1482 |
+
</layer>
|
1483 |
+
<layer id="83" name="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu" type="ReLU" version="opset1">
|
1484 |
+
<input>
|
1485 |
+
<port id="0" precision="FP32">
|
1486 |
+
<dim>1</dim>
|
1487 |
+
<dim>256</dim>
|
1488 |
+
<dim>16</dim>
|
1489 |
+
<dim>16</dim>
|
1490 |
+
</port>
|
1491 |
+
</input>
|
1492 |
+
<output>
|
1493 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.0/act2/Relu_output_0">
|
1494 |
+
<dim>1</dim>
|
1495 |
+
<dim>256</dim>
|
1496 |
+
<dim>16</dim>
|
1497 |
+
<dim>16</dim>
|
1498 |
+
</port>
|
1499 |
+
</output>
|
1500 |
+
</layer>
|
1501 |
+
<layer id="84" name="onnx::Conv_299" type="Const" version="opset1">
|
1502 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="6401580" size="2359296" />
|
1503 |
+
<output>
|
1504 |
+
<port id="0" precision="FP32" names="onnx::Conv_299">
|
1505 |
+
<dim>256</dim>
|
1506 |
+
<dim>256</dim>
|
1507 |
+
<dim>3</dim>
|
1508 |
+
<dim>3</dim>
|
1509 |
+
</port>
|
1510 |
+
</output>
|
1511 |
+
</layer>
|
1512 |
+
<layer id="85" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1513 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1514 |
+
<input>
|
1515 |
+
<port id="0" precision="FP32">
|
1516 |
+
<dim>1</dim>
|
1517 |
+
<dim>256</dim>
|
1518 |
+
<dim>16</dim>
|
1519 |
+
<dim>16</dim>
|
1520 |
+
</port>
|
1521 |
+
<port id="1" precision="FP32">
|
1522 |
+
<dim>256</dim>
|
1523 |
+
<dim>256</dim>
|
1524 |
+
<dim>3</dim>
|
1525 |
+
<dim>3</dim>
|
1526 |
+
</port>
|
1527 |
+
</input>
|
1528 |
+
<output>
|
1529 |
+
<port id="2" precision="FP32">
|
1530 |
+
<dim>1</dim>
|
1531 |
+
<dim>256</dim>
|
1532 |
+
<dim>16</dim>
|
1533 |
+
<dim>16</dim>
|
1534 |
+
</port>
|
1535 |
+
</output>
|
1536 |
+
</layer>
|
1537 |
+
<layer id="86" name="Reshape_696" type="Const" version="opset1">
|
1538 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="8760876" size="1024" />
|
1539 |
+
<output>
|
1540 |
+
<port id="0" precision="FP32">
|
1541 |
+
<dim>1</dim>
|
1542 |
+
<dim>256</dim>
|
1543 |
+
<dim>1</dim>
|
1544 |
+
<dim>1</dim>
|
1545 |
+
</port>
|
1546 |
+
</output>
|
1547 |
+
</layer>
|
1548 |
+
<layer id="87" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv" type="Add" version="opset1">
|
1549 |
+
<data auto_broadcast="numpy" />
|
1550 |
+
<input>
|
1551 |
+
<port id="0" precision="FP32">
|
1552 |
+
<dim>1</dim>
|
1553 |
+
<dim>256</dim>
|
1554 |
+
<dim>16</dim>
|
1555 |
+
<dim>16</dim>
|
1556 |
+
</port>
|
1557 |
+
<port id="1" precision="FP32">
|
1558 |
+
<dim>1</dim>
|
1559 |
+
<dim>256</dim>
|
1560 |
+
<dim>1</dim>
|
1561 |
+
<dim>1</dim>
|
1562 |
+
</port>
|
1563 |
+
</input>
|
1564 |
+
<output>
|
1565 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv1/Conv_output_0">
|
1566 |
+
<dim>1</dim>
|
1567 |
+
<dim>256</dim>
|
1568 |
+
<dim>16</dim>
|
1569 |
+
<dim>16</dim>
|
1570 |
+
</port>
|
1571 |
+
</output>
|
1572 |
+
</layer>
|
1573 |
+
<layer id="88" name="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu" type="ReLU" version="opset1">
|
1574 |
+
<input>
|
1575 |
+
<port id="0" precision="FP32">
|
1576 |
+
<dim>1</dim>
|
1577 |
+
<dim>256</dim>
|
1578 |
+
<dim>16</dim>
|
1579 |
+
<dim>16</dim>
|
1580 |
+
</port>
|
1581 |
+
</input>
|
1582 |
+
<output>
|
1583 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act1/Relu_output_0">
|
1584 |
+
<dim>1</dim>
|
1585 |
+
<dim>256</dim>
|
1586 |
+
<dim>16</dim>
|
1587 |
+
<dim>16</dim>
|
1588 |
+
</port>
|
1589 |
+
</output>
|
1590 |
+
</layer>
|
1591 |
+
<layer id="89" name="onnx::Conv_302" type="Const" version="opset1">
|
1592 |
+
<data element_type="f32" shape="256, 256, 3, 3" offset="8761900" size="2359296" />
|
1593 |
+
<output>
|
1594 |
+
<port id="0" precision="FP32" names="onnx::Conv_302">
|
1595 |
+
<dim>256</dim>
|
1596 |
+
<dim>256</dim>
|
1597 |
+
<dim>3</dim>
|
1598 |
+
<dim>3</dim>
|
1599 |
+
</port>
|
1600 |
+
</output>
|
1601 |
+
</layer>
|
1602 |
+
<layer id="90" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv/WithoutBiases" type="Convolution" version="opset1">
|
1603 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
1604 |
+
<input>
|
1605 |
+
<port id="0" precision="FP32">
|
1606 |
+
<dim>1</dim>
|
1607 |
+
<dim>256</dim>
|
1608 |
+
<dim>16</dim>
|
1609 |
+
<dim>16</dim>
|
1610 |
+
</port>
|
1611 |
+
<port id="1" precision="FP32">
|
1612 |
+
<dim>256</dim>
|
1613 |
+
<dim>256</dim>
|
1614 |
+
<dim>3</dim>
|
1615 |
+
<dim>3</dim>
|
1616 |
+
</port>
|
1617 |
+
</input>
|
1618 |
+
<output>
|
1619 |
+
<port id="2" precision="FP32">
|
1620 |
+
<dim>1</dim>
|
1621 |
+
<dim>256</dim>
|
1622 |
+
<dim>16</dim>
|
1623 |
+
<dim>16</dim>
|
1624 |
+
</port>
|
1625 |
+
</output>
|
1626 |
+
</layer>
|
1627 |
+
<layer id="91" name="Reshape_745" type="Const" version="opset1">
|
1628 |
+
<data element_type="f32" shape="1, 256, 1, 1" offset="11121196" size="1024" />
|
1629 |
+
<output>
|
1630 |
+
<port id="0" precision="FP32">
|
1631 |
+
<dim>1</dim>
|
1632 |
+
<dim>256</dim>
|
1633 |
+
<dim>1</dim>
|
1634 |
+
<dim>1</dim>
|
1635 |
+
</port>
|
1636 |
+
</output>
|
1637 |
+
</layer>
|
1638 |
+
<layer id="92" name="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv" type="Add" version="opset1">
|
1639 |
+
<data auto_broadcast="numpy" />
|
1640 |
+
<input>
|
1641 |
+
<port id="0" precision="FP32">
|
1642 |
+
<dim>1</dim>
|
1643 |
+
<dim>256</dim>
|
1644 |
+
<dim>16</dim>
|
1645 |
+
<dim>16</dim>
|
1646 |
+
</port>
|
1647 |
+
<port id="1" precision="FP32">
|
1648 |
+
<dim>1</dim>
|
1649 |
+
<dim>256</dim>
|
1650 |
+
<dim>1</dim>
|
1651 |
+
<dim>1</dim>
|
1652 |
+
</port>
|
1653 |
+
</input>
|
1654 |
+
<output>
|
1655 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/conv2/Conv_output_0">
|
1656 |
+
<dim>1</dim>
|
1657 |
+
<dim>256</dim>
|
1658 |
+
<dim>16</dim>
|
1659 |
+
<dim>16</dim>
|
1660 |
+
</port>
|
1661 |
+
</output>
|
1662 |
+
</layer>
|
1663 |
+
<layer id="93" name="/feature_extractor/feature_extractor/layer3/layer3.1/Add" type="Add" version="opset1">
|
1664 |
+
<data auto_broadcast="numpy" />
|
1665 |
+
<input>
|
1666 |
+
<port id="0" precision="FP32">
|
1667 |
+
<dim>1</dim>
|
1668 |
+
<dim>256</dim>
|
1669 |
+
<dim>16</dim>
|
1670 |
+
<dim>16</dim>
|
1671 |
+
</port>
|
1672 |
+
<port id="1" precision="FP32">
|
1673 |
+
<dim>1</dim>
|
1674 |
+
<dim>256</dim>
|
1675 |
+
<dim>16</dim>
|
1676 |
+
<dim>16</dim>
|
1677 |
+
</port>
|
1678 |
+
</input>
|
1679 |
+
<output>
|
1680 |
+
<port id="2" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/Add_output_0">
|
1681 |
+
<dim>1</dim>
|
1682 |
+
<dim>256</dim>
|
1683 |
+
<dim>16</dim>
|
1684 |
+
<dim>16</dim>
|
1685 |
+
</port>
|
1686 |
+
</output>
|
1687 |
+
</layer>
|
1688 |
+
<layer id="94" name="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu" type="ReLU" version="opset1">
|
1689 |
+
<input>
|
1690 |
+
<port id="0" precision="FP32">
|
1691 |
+
<dim>1</dim>
|
1692 |
+
<dim>256</dim>
|
1693 |
+
<dim>16</dim>
|
1694 |
+
<dim>16</dim>
|
1695 |
+
</port>
|
1696 |
+
</input>
|
1697 |
+
<output>
|
1698 |
+
<port id="1" precision="FP32" names="/feature_extractor/feature_extractor/layer3/layer3.1/act2/Relu_output_0">
|
1699 |
+
<dim>1</dim>
|
1700 |
+
<dim>256</dim>
|
1701 |
+
<dim>16</dim>
|
1702 |
+
<dim>16</dim>
|
1703 |
+
</port>
|
1704 |
+
</output>
|
1705 |
+
</layer>
|
1706 |
+
<layer id="95" name="/Shape_3" type="ShapeOf" version="opset3">
|
1707 |
+
<data output_type="i64" />
|
1708 |
+
<input>
|
1709 |
+
<port id="0" precision="FP32">
|
1710 |
+
<dim>1</dim>
|
1711 |
+
<dim>256</dim>
|
1712 |
+
<dim>16</dim>
|
1713 |
+
<dim>16</dim>
|
1714 |
+
</port>
|
1715 |
+
</input>
|
1716 |
+
<output>
|
1717 |
+
<port id="1" precision="I64" names="/Shape_3_output_0">
|
1718 |
+
<dim>4</dim>
|
1719 |
+
</port>
|
1720 |
+
</output>
|
1721 |
+
</layer>
|
1722 |
+
<layer id="96" name="/Constant_9" type="Const" version="opset1">
|
1723 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
1724 |
+
<output>
|
1725 |
+
<port id="0" precision="I64" names="/Constant_9_output_0">
|
1726 |
+
<dim>1</dim>
|
1727 |
+
</port>
|
1728 |
+
</output>
|
1729 |
+
</layer>
|
1730 |
+
<layer id="97" name="/Constant_10" type="Const" version="opset1">
|
1731 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
1732 |
+
<output>
|
1733 |
+
<port id="0" precision="I64" names="/Constant_10_output_0">
|
1734 |
+
<dim>1</dim>
|
1735 |
+
</port>
|
1736 |
+
</output>
|
1737 |
+
</layer>
|
1738 |
+
<layer id="98" name="Broadcast_861" type="Const" version="opset1">
|
1739 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
1740 |
+
<output>
|
1741 |
+
<port id="0" precision="I64">
|
1742 |
+
<dim>1</dim>
|
1743 |
+
</port>
|
1744 |
+
</output>
|
1745 |
+
</layer>
|
1746 |
+
<layer id="99" name="/Slice_1" type="StridedSlice" version="opset1">
|
1747 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
1748 |
+
<input>
|
1749 |
+
<port id="0" precision="I64">
|
1750 |
+
<dim>4</dim>
|
1751 |
+
</port>
|
1752 |
+
<port id="1" precision="I64">
|
1753 |
+
<dim>1</dim>
|
1754 |
+
</port>
|
1755 |
+
<port id="2" precision="I64">
|
1756 |
+
<dim>1</dim>
|
1757 |
+
</port>
|
1758 |
+
<port id="3" precision="I64">
|
1759 |
+
<dim>1</dim>
|
1760 |
+
</port>
|
1761 |
+
</input>
|
1762 |
+
<output>
|
1763 |
+
<port id="4" precision="I64" names="/Slice_1_output_0">
|
1764 |
+
<dim>2</dim>
|
1765 |
+
</port>
|
1766 |
+
</output>
|
1767 |
+
</layer>
|
1768 |
+
<layer id="100" name="/Shape_1" type="ShapeOf" version="opset3">
|
1769 |
+
<data output_type="i64" />
|
1770 |
+
<input>
|
1771 |
+
<port id="0" precision="FP32">
|
1772 |
+
<dim>1</dim>
|
1773 |
+
<dim>192</dim>
|
1774 |
+
<dim>64</dim>
|
1775 |
+
<dim>64</dim>
|
1776 |
+
</port>
|
1777 |
+
</input>
|
1778 |
+
<output>
|
1779 |
+
<port id="1" precision="I64" names="/Shape_1_output_0,/Shape_2_output_0">
|
1780 |
+
<dim>4</dim>
|
1781 |
+
</port>
|
1782 |
+
</output>
|
1783 |
+
</layer>
|
1784 |
+
<layer id="101" name="Constant_6090" type="Const" version="opset1">
|
1785 |
+
<data element_type="i64" shape="2" offset="11122220" size="16" />
|
1786 |
+
<output>
|
1787 |
+
<port id="0" precision="I64">
|
1788 |
+
<dim>2</dim>
|
1789 |
+
</port>
|
1790 |
+
</output>
|
1791 |
+
</layer>
|
1792 |
+
<layer id="102" name="Constant_6091" type="Const" version="opset1">
|
1793 |
+
<data element_type="i64" shape="" offset="2728448" size="8" />
|
1794 |
+
<output>
|
1795 |
+
<port id="0" precision="I64" />
|
1796 |
+
</output>
|
1797 |
+
</layer>
|
1798 |
+
<layer id="103" name="Gather_6092" type="Gather" version="opset8">
|
1799 |
+
<data batch_dims="0" />
|
1800 |
+
<input>
|
1801 |
+
<port id="0" precision="I64">
|
1802 |
+
<dim>4</dim>
|
1803 |
+
</port>
|
1804 |
+
<port id="1" precision="I64">
|
1805 |
+
<dim>2</dim>
|
1806 |
+
</port>
|
1807 |
+
<port id="2" precision="I64" />
|
1808 |
+
</input>
|
1809 |
+
<output>
|
1810 |
+
<port id="3" precision="I64" names="/Cast_output_0,/Concat_2_output_0">
|
1811 |
+
<dim>2</dim>
|
1812 |
+
</port>
|
1813 |
+
</output>
|
1814 |
+
</layer>
|
1815 |
+
<layer id="104" name="/Concat_3" type="Concat" version="opset1">
|
1816 |
+
<data axis="0" />
|
1817 |
+
<input>
|
1818 |
+
<port id="0" precision="I64">
|
1819 |
+
<dim>2</dim>
|
1820 |
+
</port>
|
1821 |
+
<port id="1" precision="I64">
|
1822 |
+
<dim>2</dim>
|
1823 |
+
</port>
|
1824 |
+
</input>
|
1825 |
+
<output>
|
1826 |
+
<port id="2" precision="I64" names="/Concat_3_output_0">
|
1827 |
+
<dim>4</dim>
|
1828 |
+
</port>
|
1829 |
+
</output>
|
1830 |
+
</layer>
|
1831 |
+
<layer id="105" name="Convert_884" type="Convert" version="opset1">
|
1832 |
+
<data destination_type="f32" />
|
1833 |
+
<input>
|
1834 |
+
<port id="0" precision="I64">
|
1835 |
+
<dim>4</dim>
|
1836 |
+
</port>
|
1837 |
+
</input>
|
1838 |
+
<output>
|
1839 |
+
<port id="1" precision="FP32">
|
1840 |
+
<dim>4</dim>
|
1841 |
+
</port>
|
1842 |
+
</output>
|
1843 |
+
</layer>
|
1844 |
+
<layer id="106" name="Convert_883" type="Convert" version="opset1">
|
1845 |
+
<data destination_type="f32" />
|
1846 |
+
<input>
|
1847 |
+
<port id="0" precision="I64">
|
1848 |
+
<dim>4</dim>
|
1849 |
+
</port>
|
1850 |
+
</input>
|
1851 |
+
<output>
|
1852 |
+
<port id="1" precision="FP32">
|
1853 |
+
<dim>4</dim>
|
1854 |
+
</port>
|
1855 |
+
</output>
|
1856 |
+
</layer>
|
1857 |
+
<layer id="107" name="Divide_885" type="Divide" version="opset1">
|
1858 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
1859 |
+
<input>
|
1860 |
+
<port id="0" precision="FP32">
|
1861 |
+
<dim>4</dim>
|
1862 |
+
</port>
|
1863 |
+
<port id="1" precision="FP32">
|
1864 |
+
<dim>4</dim>
|
1865 |
+
</port>
|
1866 |
+
</input>
|
1867 |
+
<output>
|
1868 |
+
<port id="2" precision="FP32">
|
1869 |
+
<dim>4</dim>
|
1870 |
+
</port>
|
1871 |
+
</output>
|
1872 |
+
</layer>
|
1873 |
+
<layer id="108" name="Constant_6583" type="Const" version="opset1">
|
1874 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
1875 |
+
<output>
|
1876 |
+
<port id="0" precision="FP32">
|
1877 |
+
<dim>1</dim>
|
1878 |
+
</port>
|
1879 |
+
</output>
|
1880 |
+
</layer>
|
1881 |
+
<layer id="109" name="Add_887" type="Add" version="opset1">
|
1882 |
+
<data auto_broadcast="numpy" />
|
1883 |
+
<input>
|
1884 |
+
<port id="0" precision="FP32">
|
1885 |
+
<dim>4</dim>
|
1886 |
+
</port>
|
1887 |
+
<port id="1" precision="FP32">
|
1888 |
+
<dim>1</dim>
|
1889 |
+
</port>
|
1890 |
+
</input>
|
1891 |
+
<output>
|
1892 |
+
<port id="2" precision="FP32">
|
1893 |
+
<dim>4</dim>
|
1894 |
+
</port>
|
1895 |
+
</output>
|
1896 |
+
</layer>
|
1897 |
+
<layer id="110" name="/Resize_1" type="Interpolate" version="opset4">
|
1898 |
+
<data mode="nearest" shape_calculation_mode="sizes" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
1899 |
+
<input>
|
1900 |
+
<port id="0" precision="FP32">
|
1901 |
+
<dim>1</dim>
|
1902 |
+
<dim>256</dim>
|
1903 |
+
<dim>16</dim>
|
1904 |
+
<dim>16</dim>
|
1905 |
+
</port>
|
1906 |
+
<port id="1" precision="I64">
|
1907 |
+
<dim>4</dim>
|
1908 |
+
</port>
|
1909 |
+
<port id="2" precision="FP32">
|
1910 |
+
<dim>4</dim>
|
1911 |
+
</port>
|
1912 |
+
</input>
|
1913 |
+
<output>
|
1914 |
+
<port id="3" precision="FP32" names="/Resize_1_output_0">
|
1915 |
+
<dim>1</dim>
|
1916 |
+
<dim>256</dim>
|
1917 |
+
<dim>64</dim>
|
1918 |
+
<dim>64</dim>
|
1919 |
+
</port>
|
1920 |
+
</output>
|
1921 |
+
</layer>
|
1922 |
+
<layer id="111" name="/Concat_4" type="Concat" version="opset1">
|
1923 |
+
<data axis="1" />
|
1924 |
+
<input>
|
1925 |
+
<port id="0" precision="FP32">
|
1926 |
+
<dim>1</dim>
|
1927 |
+
<dim>192</dim>
|
1928 |
+
<dim>64</dim>
|
1929 |
+
<dim>64</dim>
|
1930 |
+
</port>
|
1931 |
+
<port id="1" precision="FP32">
|
1932 |
+
<dim>1</dim>
|
1933 |
+
<dim>256</dim>
|
1934 |
+
<dim>64</dim>
|
1935 |
+
<dim>64</dim>
|
1936 |
+
</port>
|
1937 |
+
</input>
|
1938 |
+
<output>
|
1939 |
+
<port id="2" precision="FP32" names="/Concat_4_output_0">
|
1940 |
+
<dim>1</dim>
|
1941 |
+
<dim>448</dim>
|
1942 |
+
<dim>64</dim>
|
1943 |
+
<dim>64</dim>
|
1944 |
+
</port>
|
1945 |
+
</output>
|
1946 |
+
</layer>
|
1947 |
+
<layer id="112" name="onnx::Gather_308" type="Const" version="opset1">
|
1948 |
+
<data element_type="i64" shape="100" offset="11122236" size="800" />
|
1949 |
+
<output>
|
1950 |
+
<port id="0" precision="I64" names="onnx::Gather_308">
|
1951 |
+
<dim>100</dim>
|
1952 |
+
</port>
|
1953 |
+
</output>
|
1954 |
+
</layer>
|
1955 |
+
<layer id="113" name="Constant_965" type="Const" version="opset1">
|
1956 |
+
<data element_type="i64" shape="" offset="2728464" size="8" />
|
1957 |
+
<output>
|
1958 |
+
<port id="0" precision="I64" />
|
1959 |
+
</output>
|
1960 |
+
</layer>
|
1961 |
+
<layer id="114" name="/Gather_2" type="Gather" version="opset8">
|
1962 |
+
<data batch_dims="0" />
|
1963 |
+
<input>
|
1964 |
+
<port id="0" precision="FP32">
|
1965 |
+
<dim>1</dim>
|
1966 |
+
<dim>448</dim>
|
1967 |
+
<dim>64</dim>
|
1968 |
+
<dim>64</dim>
|
1969 |
+
</port>
|
1970 |
+
<port id="1" precision="I64">
|
1971 |
+
<dim>100</dim>
|
1972 |
+
</port>
|
1973 |
+
<port id="2" precision="I64" />
|
1974 |
+
</input>
|
1975 |
+
<output>
|
1976 |
+
<port id="3" precision="FP32" names="/Gather_2_output_0">
|
1977 |
+
<dim>1</dim>
|
1978 |
+
<dim>100</dim>
|
1979 |
+
<dim>64</dim>
|
1980 |
+
<dim>64</dim>
|
1981 |
+
</port>
|
1982 |
+
</output>
|
1983 |
+
</layer>
|
1984 |
+
<layer id="115" name="/anomaly_map_generator/Constant" type="Const" version="opset1">
|
1985 |
+
<data element_type="i64" shape="3" offset="11123036" size="24" />
|
1986 |
+
<output>
|
1987 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_output_0">
|
1988 |
+
<dim>3</dim>
|
1989 |
+
</port>
|
1990 |
+
</output>
|
1991 |
+
</layer>
|
1992 |
+
<layer id="116" name="/anomaly_map_generator/Reshape" type="Reshape" version="opset1">
|
1993 |
+
<data special_zero="true" />
|
1994 |
+
<input>
|
1995 |
+
<port id="0" precision="FP32">
|
1996 |
+
<dim>1</dim>
|
1997 |
+
<dim>100</dim>
|
1998 |
+
<dim>64</dim>
|
1999 |
+
<dim>64</dim>
|
2000 |
+
</port>
|
2001 |
+
<port id="1" precision="I64">
|
2002 |
+
<dim>3</dim>
|
2003 |
+
</port>
|
2004 |
+
</input>
|
2005 |
+
<output>
|
2006 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_output_0">
|
2007 |
+
<dim>1</dim>
|
2008 |
+
<dim>100</dim>
|
2009 |
+
<dim>4096</dim>
|
2010 |
+
</port>
|
2011 |
+
</output>
|
2012 |
+
</layer>
|
2013 |
+
<layer id="117" name="Constant_6584" type="Const" version="opset1">
|
2014 |
+
<data element_type="f32" shape="1, 100, 4096" offset="11123060" size="1638400" />
|
2015 |
+
<output>
|
2016 |
+
<port id="0" precision="FP32">
|
2017 |
+
<dim>1</dim>
|
2018 |
+
<dim>100</dim>
|
2019 |
+
<dim>4096</dim>
|
2020 |
+
</port>
|
2021 |
+
</output>
|
2022 |
+
</layer>
|
2023 |
+
<layer id="118" name="/anomaly_map_generator/Sub" type="Subtract" version="opset1">
|
2024 |
+
<data auto_broadcast="numpy" />
|
2025 |
+
<input>
|
2026 |
+
<port id="0" precision="FP32">
|
2027 |
+
<dim>1</dim>
|
2028 |
+
<dim>100</dim>
|
2029 |
+
<dim>4096</dim>
|
2030 |
+
</port>
|
2031 |
+
<port id="1" precision="FP32">
|
2032 |
+
<dim>1</dim>
|
2033 |
+
<dim>100</dim>
|
2034 |
+
<dim>4096</dim>
|
2035 |
+
</port>
|
2036 |
+
</input>
|
2037 |
+
<output>
|
2038 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Sub_output_0">
|
2039 |
+
<dim>1</dim>
|
2040 |
+
<dim>100</dim>
|
2041 |
+
<dim>4096</dim>
|
2042 |
+
</port>
|
2043 |
+
</output>
|
2044 |
+
</layer>
|
2045 |
+
<layer id="119" name="Constant_975" type="Const" version="opset1">
|
2046 |
+
<data element_type="i64" shape="3" offset="12761460" size="24" />
|
2047 |
+
<output>
|
2048 |
+
<port id="0" precision="I64">
|
2049 |
+
<dim>3</dim>
|
2050 |
+
</port>
|
2051 |
+
</output>
|
2052 |
+
</layer>
|
2053 |
+
<layer id="120" name="/anomaly_map_generator/Transpose" type="Transpose" version="opset1">
|
2054 |
+
<input>
|
2055 |
+
<port id="0" precision="FP32">
|
2056 |
+
<dim>1</dim>
|
2057 |
+
<dim>100</dim>
|
2058 |
+
<dim>4096</dim>
|
2059 |
+
</port>
|
2060 |
+
<port id="1" precision="I64">
|
2061 |
+
<dim>3</dim>
|
2062 |
+
</port>
|
2063 |
+
</input>
|
2064 |
+
<output>
|
2065 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Transpose_output_0">
|
2066 |
+
<dim>4096</dim>
|
2067 |
+
<dim>1</dim>
|
2068 |
+
<dim>100</dim>
|
2069 |
+
</port>
|
2070 |
+
</output>
|
2071 |
+
</layer>
|
2072 |
+
<layer id="121" name="onnx::MatMul_310" type="Const" version="opset1">
|
2073 |
+
<data element_type="f32" shape="4096, 100, 100" offset="12761484" size="163840000" />
|
2074 |
+
<output>
|
2075 |
+
<port id="0" precision="FP32" names="onnx::MatMul_310">
|
2076 |
+
<dim>4096</dim>
|
2077 |
+
<dim>100</dim>
|
2078 |
+
<dim>100</dim>
|
2079 |
+
</port>
|
2080 |
+
</output>
|
2081 |
+
</layer>
|
2082 |
+
<layer id="122" name="/anomaly_map_generator/MatMul" type="MatMul" version="opset1">
|
2083 |
+
<data transpose_a="false" transpose_b="false" />
|
2084 |
+
<input>
|
2085 |
+
<port id="0" precision="FP32">
|
2086 |
+
<dim>4096</dim>
|
2087 |
+
<dim>1</dim>
|
2088 |
+
<dim>100</dim>
|
2089 |
+
</port>
|
2090 |
+
<port id="1" precision="FP32">
|
2091 |
+
<dim>4096</dim>
|
2092 |
+
<dim>100</dim>
|
2093 |
+
<dim>100</dim>
|
2094 |
+
</port>
|
2095 |
+
</input>
|
2096 |
+
<output>
|
2097 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/MatMul_output_0">
|
2098 |
+
<dim>4096</dim>
|
2099 |
+
<dim>1</dim>
|
2100 |
+
<dim>100</dim>
|
2101 |
+
</port>
|
2102 |
+
</output>
|
2103 |
+
</layer>
|
2104 |
+
<layer id="123" name="/anomaly_map_generator/Mul" type="Multiply" version="opset1">
|
2105 |
+
<data auto_broadcast="numpy" />
|
2106 |
+
<input>
|
2107 |
+
<port id="0" precision="FP32">
|
2108 |
+
<dim>4096</dim>
|
2109 |
+
<dim>1</dim>
|
2110 |
+
<dim>100</dim>
|
2111 |
+
</port>
|
2112 |
+
<port id="1" precision="FP32">
|
2113 |
+
<dim>4096</dim>
|
2114 |
+
<dim>1</dim>
|
2115 |
+
<dim>100</dim>
|
2116 |
+
</port>
|
2117 |
+
</input>
|
2118 |
+
<output>
|
2119 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Mul_output_0">
|
2120 |
+
<dim>4096</dim>
|
2121 |
+
<dim>1</dim>
|
2122 |
+
<dim>100</dim>
|
2123 |
+
</port>
|
2124 |
+
</output>
|
2125 |
+
</layer>
|
2126 |
+
<layer id="124" name="Constant_979" type="Const" version="opset1">
|
2127 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2128 |
+
<output>
|
2129 |
+
<port id="0" precision="I64">
|
2130 |
+
<dim>1</dim>
|
2131 |
+
</port>
|
2132 |
+
</output>
|
2133 |
+
</layer>
|
2134 |
+
<layer id="125" name="/anomaly_map_generator/ReduceSum" type="ReduceSum" version="opset1">
|
2135 |
+
<data keep_dims="false" />
|
2136 |
+
<input>
|
2137 |
+
<port id="0" precision="FP32">
|
2138 |
+
<dim>4096</dim>
|
2139 |
+
<dim>1</dim>
|
2140 |
+
<dim>100</dim>
|
2141 |
+
</port>
|
2142 |
+
<port id="1" precision="I64">
|
2143 |
+
<dim>1</dim>
|
2144 |
+
</port>
|
2145 |
+
</input>
|
2146 |
+
<output>
|
2147 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/ReduceSum_output_0">
|
2148 |
+
<dim>4096</dim>
|
2149 |
+
<dim>1</dim>
|
2150 |
+
</port>
|
2151 |
+
</output>
|
2152 |
+
</layer>
|
2153 |
+
<layer id="126" name="/anomaly_map_generator/Constant_1" type="Const" version="opset1">
|
2154 |
+
<data element_type="i64" shape="4" offset="176601484" size="32" />
|
2155 |
+
<output>
|
2156 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_1_output_0">
|
2157 |
+
<dim>4</dim>
|
2158 |
+
</port>
|
2159 |
+
</output>
|
2160 |
+
</layer>
|
2161 |
+
<layer id="127" name="/anomaly_map_generator/Reshape_1" type="Reshape" version="opset1">
|
2162 |
+
<data special_zero="true" />
|
2163 |
+
<input>
|
2164 |
+
<port id="0" precision="FP32">
|
2165 |
+
<dim>4096</dim>
|
2166 |
+
<dim>1</dim>
|
2167 |
+
</port>
|
2168 |
+
<port id="1" precision="I64">
|
2169 |
+
<dim>4</dim>
|
2170 |
+
</port>
|
2171 |
+
</input>
|
2172 |
+
<output>
|
2173 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/Reshape_1_output_0">
|
2174 |
+
<dim>1</dim>
|
2175 |
+
<dim>1</dim>
|
2176 |
+
<dim>64</dim>
|
2177 |
+
<dim>64</dim>
|
2178 |
+
</port>
|
2179 |
+
</output>
|
2180 |
+
</layer>
|
2181 |
+
<layer id="128" name="/anomaly_map_generator/Clip" type="Clamp" version="opset1">
|
2182 |
+
<data min="0" max="3.4028234663852886e+38" />
|
2183 |
+
<input>
|
2184 |
+
<port id="0" precision="FP32">
|
2185 |
+
<dim>1</dim>
|
2186 |
+
<dim>1</dim>
|
2187 |
+
<dim>64</dim>
|
2188 |
+
<dim>64</dim>
|
2189 |
+
</port>
|
2190 |
+
</input>
|
2191 |
+
<output>
|
2192 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Clip_output_0">
|
2193 |
+
<dim>1</dim>
|
2194 |
+
<dim>1</dim>
|
2195 |
+
<dim>64</dim>
|
2196 |
+
<dim>64</dim>
|
2197 |
+
</port>
|
2198 |
+
</output>
|
2199 |
+
</layer>
|
2200 |
+
<layer id="129" name="/anomaly_map_generator/Sqrt" type="Sqrt" version="opset1">
|
2201 |
+
<input>
|
2202 |
+
<port id="0" precision="FP32">
|
2203 |
+
<dim>1</dim>
|
2204 |
+
<dim>1</dim>
|
2205 |
+
<dim>64</dim>
|
2206 |
+
<dim>64</dim>
|
2207 |
+
</port>
|
2208 |
+
</input>
|
2209 |
+
<output>
|
2210 |
+
<port id="1" precision="FP32" names="/anomaly_map_generator/Sqrt_output_0">
|
2211 |
+
<dim>1</dim>
|
2212 |
+
<dim>1</dim>
|
2213 |
+
<dim>64</dim>
|
2214 |
+
<dim>64</dim>
|
2215 |
+
</port>
|
2216 |
+
</output>
|
2217 |
+
</layer>
|
2218 |
+
<layer id="130" name="/anomaly_map_generator/Shape" type="ShapeOf" version="opset3">
|
2219 |
+
<data output_type="i64" />
|
2220 |
+
<input>
|
2221 |
+
<port id="0" precision="FP32">
|
2222 |
+
<dim>1</dim>
|
2223 |
+
<dim>1</dim>
|
2224 |
+
<dim>64</dim>
|
2225 |
+
<dim>64</dim>
|
2226 |
+
</port>
|
2227 |
+
</input>
|
2228 |
+
<output>
|
2229 |
+
<port id="1" precision="I64" names="/anomaly_map_generator/Shape_output_0">
|
2230 |
+
<dim>4</dim>
|
2231 |
+
</port>
|
2232 |
+
</output>
|
2233 |
+
</layer>
|
2234 |
+
<layer id="131" name="/anomaly_map_generator/Constant_4" type="Const" version="opset1">
|
2235 |
+
<data element_type="i64" shape="1" offset="2728448" size="8" />
|
2236 |
+
<output>
|
2237 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_4_output_0">
|
2238 |
+
<dim>1</dim>
|
2239 |
+
</port>
|
2240 |
+
</output>
|
2241 |
+
</layer>
|
2242 |
+
<layer id="132" name="/anomaly_map_generator/Constant_5" type="Const" version="opset1">
|
2243 |
+
<data element_type="i64" shape="1" offset="2728456" size="8" />
|
2244 |
+
<output>
|
2245 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_5_output_0">
|
2246 |
+
<dim>1</dim>
|
2247 |
+
</port>
|
2248 |
+
</output>
|
2249 |
+
</layer>
|
2250 |
+
<layer id="133" name="Broadcast_1002" type="Const" version="opset1">
|
2251 |
+
<data element_type="i64" shape="1" offset="2728464" size="8" />
|
2252 |
+
<output>
|
2253 |
+
<port id="0" precision="I64">
|
2254 |
+
<dim>1</dim>
|
2255 |
+
</port>
|
2256 |
+
</output>
|
2257 |
+
</layer>
|
2258 |
+
<layer id="134" name="/anomaly_map_generator/Slice" type="StridedSlice" version="opset1">
|
2259 |
+
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
|
2260 |
+
<input>
|
2261 |
+
<port id="0" precision="I64">
|
2262 |
+
<dim>4</dim>
|
2263 |
+
</port>
|
2264 |
+
<port id="1" precision="I64">
|
2265 |
+
<dim>1</dim>
|
2266 |
+
</port>
|
2267 |
+
<port id="2" precision="I64">
|
2268 |
+
<dim>1</dim>
|
2269 |
+
</port>
|
2270 |
+
<port id="3" precision="I64">
|
2271 |
+
<dim>1</dim>
|
2272 |
+
</port>
|
2273 |
+
</input>
|
2274 |
+
<output>
|
2275 |
+
<port id="4" precision="I64" names="/anomaly_map_generator/Slice_output_0">
|
2276 |
+
<dim>2</dim>
|
2277 |
+
</port>
|
2278 |
+
</output>
|
2279 |
+
</layer>
|
2280 |
+
<layer id="135" name="/anomaly_map_generator/Constant_6" type="Const" version="opset1">
|
2281 |
+
<data element_type="i64" shape="2" offset="176601516" size="16" />
|
2282 |
+
<output>
|
2283 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/Constant_6_output_0">
|
2284 |
+
<dim>2</dim>
|
2285 |
+
</port>
|
2286 |
+
</output>
|
2287 |
+
</layer>
|
2288 |
+
<layer id="136" name="/anomaly_map_generator/Concat" type="Concat" version="opset1">
|
2289 |
+
<data axis="0" />
|
2290 |
+
<input>
|
2291 |
+
<port id="0" precision="I64">
|
2292 |
+
<dim>2</dim>
|
2293 |
+
</port>
|
2294 |
+
<port id="1" precision="I64">
|
2295 |
+
<dim>2</dim>
|
2296 |
+
</port>
|
2297 |
+
</input>
|
2298 |
+
<output>
|
2299 |
+
<port id="2" precision="I64" names="/anomaly_map_generator/Concat_output_0">
|
2300 |
+
<dim>4</dim>
|
2301 |
+
</port>
|
2302 |
+
</output>
|
2303 |
+
</layer>
|
2304 |
+
<layer id="137" name="Convert_1025" type="Convert" version="opset1">
|
2305 |
+
<data destination_type="f32" />
|
2306 |
+
<input>
|
2307 |
+
<port id="0" precision="I64">
|
2308 |
+
<dim>4</dim>
|
2309 |
+
</port>
|
2310 |
+
</input>
|
2311 |
+
<output>
|
2312 |
+
<port id="1" precision="FP32">
|
2313 |
+
<dim>4</dim>
|
2314 |
+
</port>
|
2315 |
+
</output>
|
2316 |
+
</layer>
|
2317 |
+
<layer id="138" name="Convert_1024" type="Convert" version="opset1">
|
2318 |
+
<data destination_type="f32" />
|
2319 |
+
<input>
|
2320 |
+
<port id="0" precision="I64">
|
2321 |
+
<dim>4</dim>
|
2322 |
+
</port>
|
2323 |
+
</input>
|
2324 |
+
<output>
|
2325 |
+
<port id="1" precision="FP32">
|
2326 |
+
<dim>4</dim>
|
2327 |
+
</port>
|
2328 |
+
</output>
|
2329 |
+
</layer>
|
2330 |
+
<layer id="139" name="Divide_1026" type="Divide" version="opset1">
|
2331 |
+
<data auto_broadcast="numpy" m_pythondiv="true" />
|
2332 |
+
<input>
|
2333 |
+
<port id="0" precision="FP32">
|
2334 |
+
<dim>4</dim>
|
2335 |
+
</port>
|
2336 |
+
<port id="1" precision="FP32">
|
2337 |
+
<dim>4</dim>
|
2338 |
+
</port>
|
2339 |
+
</input>
|
2340 |
+
<output>
|
2341 |
+
<port id="2" precision="FP32">
|
2342 |
+
<dim>4</dim>
|
2343 |
+
</port>
|
2344 |
+
</output>
|
2345 |
+
</layer>
|
2346 |
+
<layer id="140" name="Constant_6585" type="Const" version="opset1">
|
2347 |
+
<data element_type="f32" shape="1" offset="2728488" size="4" />
|
2348 |
+
<output>
|
2349 |
+
<port id="0" precision="FP32">
|
2350 |
+
<dim>1</dim>
|
2351 |
+
</port>
|
2352 |
+
</output>
|
2353 |
+
</layer>
|
2354 |
+
<layer id="141" name="Add_1028" type="Add" version="opset1">
|
2355 |
+
<data auto_broadcast="numpy" />
|
2356 |
+
<input>
|
2357 |
+
<port id="0" precision="FP32">
|
2358 |
+
<dim>4</dim>
|
2359 |
+
</port>
|
2360 |
+
<port id="1" precision="FP32">
|
2361 |
+
<dim>1</dim>
|
2362 |
+
</port>
|
2363 |
+
</input>
|
2364 |
+
<output>
|
2365 |
+
<port id="2" precision="FP32">
|
2366 |
+
<dim>4</dim>
|
2367 |
+
</port>
|
2368 |
+
</output>
|
2369 |
+
</layer>
|
2370 |
+
<layer id="142" name="/anomaly_map_generator/Resize" type="Interpolate" version="opset4">
|
2371 |
+
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
|
2372 |
+
<input>
|
2373 |
+
<port id="0" precision="FP32">
|
2374 |
+
<dim>1</dim>
|
2375 |
+
<dim>1</dim>
|
2376 |
+
<dim>64</dim>
|
2377 |
+
<dim>64</dim>
|
2378 |
+
</port>
|
2379 |
+
<port id="1" precision="I64">
|
2380 |
+
<dim>4</dim>
|
2381 |
+
</port>
|
2382 |
+
<port id="2" precision="FP32">
|
2383 |
+
<dim>4</dim>
|
2384 |
+
</port>
|
2385 |
+
</input>
|
2386 |
+
<output>
|
2387 |
+
<port id="3" precision="FP32" names="/anomaly_map_generator/Resize_output_0">
|
2388 |
+
<dim>1</dim>
|
2389 |
+
<dim>1</dim>
|
2390 |
+
<dim>256</dim>
|
2391 |
+
<dim>256</dim>
|
2392 |
+
</port>
|
2393 |
+
</output>
|
2394 |
+
</layer>
|
2395 |
+
<layer id="143" name="Split_1097.0" type="Const" version="opset1">
|
2396 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2397 |
+
<output>
|
2398 |
+
<port id="0" precision="I64">
|
2399 |
+
<dim>4</dim>
|
2400 |
+
</port>
|
2401 |
+
</output>
|
2402 |
+
</layer>
|
2403 |
+
<layer id="144" name="Split_1097.1" type="Const" version="opset1">
|
2404 |
+
<data element_type="i64" shape="4" offset="176601532" size="32" />
|
2405 |
+
<output>
|
2406 |
+
<port id="0" precision="I64">
|
2407 |
+
<dim>4</dim>
|
2408 |
+
</port>
|
2409 |
+
</output>
|
2410 |
+
</layer>
|
2411 |
+
<layer id="145" name="Constant_1095" type="Const" version="opset1">
|
2412 |
+
<data element_type="f32" shape="" offset="176601564" size="4" />
|
2413 |
+
<output>
|
2414 |
+
<port id="0" precision="FP32" />
|
2415 |
+
</output>
|
2416 |
+
</layer>
|
2417 |
+
<layer id="146" name="/anomaly_map_generator/blur/Pad" type="Pad" version="opset1">
|
2418 |
+
<data pad_mode="reflect" />
|
2419 |
+
<input>
|
2420 |
+
<port id="0" precision="FP32">
|
2421 |
+
<dim>1</dim>
|
2422 |
+
<dim>1</dim>
|
2423 |
+
<dim>256</dim>
|
2424 |
+
<dim>256</dim>
|
2425 |
+
</port>
|
2426 |
+
<port id="1" precision="I64">
|
2427 |
+
<dim>4</dim>
|
2428 |
+
</port>
|
2429 |
+
<port id="2" precision="I64">
|
2430 |
+
<dim>4</dim>
|
2431 |
+
</port>
|
2432 |
+
<port id="3" precision="FP32" />
|
2433 |
+
</input>
|
2434 |
+
<output>
|
2435 |
+
<port id="4" precision="FP32" names="/anomaly_map_generator/blur/Pad_output_0">
|
2436 |
+
<dim>1</dim>
|
2437 |
+
<dim>1</dim>
|
2438 |
+
<dim>288</dim>
|
2439 |
+
<dim>288</dim>
|
2440 |
+
</port>
|
2441 |
+
</output>
|
2442 |
+
</layer>
|
2443 |
+
<layer id="147" name="anomaly_map_generator.blur.kernel" type="Const" version="opset1">
|
2444 |
+
<data element_type="f32" shape="1, 1, 33, 33" offset="176601568" size="4356" />
|
2445 |
+
<output>
|
2446 |
+
<port id="0" precision="FP32" names="anomaly_map_generator.blur.kernel">
|
2447 |
+
<dim>1</dim>
|
2448 |
+
<dim>1</dim>
|
2449 |
+
<dim>33</dim>
|
2450 |
+
<dim>33</dim>
|
2451 |
+
</port>
|
2452 |
+
</output>
|
2453 |
+
</layer>
|
2454 |
+
<layer id="148" name="/anomaly_map_generator/blur/Conv" type="Convolution" version="opset1">
|
2455 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
2456 |
+
<input>
|
2457 |
+
<port id="0" precision="FP32">
|
2458 |
+
<dim>1</dim>
|
2459 |
+
<dim>1</dim>
|
2460 |
+
<dim>288</dim>
|
2461 |
+
<dim>288</dim>
|
2462 |
+
</port>
|
2463 |
+
<port id="1" precision="FP32">
|
2464 |
+
<dim>1</dim>
|
2465 |
+
<dim>1</dim>
|
2466 |
+
<dim>33</dim>
|
2467 |
+
<dim>33</dim>
|
2468 |
+
</port>
|
2469 |
+
</input>
|
2470 |
+
<output>
|
2471 |
+
<port id="2" precision="FP32" names="/anomaly_map_generator/blur/Conv_output_0">
|
2472 |
+
<dim>1</dim>
|
2473 |
+
<dim>1</dim>
|
2474 |
+
<dim>256</dim>
|
2475 |
+
<dim>256</dim>
|
2476 |
+
</port>
|
2477 |
+
</output>
|
2478 |
+
</layer>
|
2479 |
+
<layer id="149" name="/anomaly_map_generator/blur/Constant_8" type="Const" version="opset1">
|
2480 |
+
<data element_type="i64" shape="4" offset="176605924" size="32" />
|
2481 |
+
<output>
|
2482 |
+
<port id="0" precision="I64" names="/anomaly_map_generator/blur/Constant_8_output_0">
|
2483 |
+
<dim>4</dim>
|
2484 |
+
</port>
|
2485 |
+
</output>
|
2486 |
+
</layer>
|
2487 |
+
<layer id="150" name="output" type="Reshape" version="opset1">
|
2488 |
+
<data special_zero="true" />
|
2489 |
+
<input>
|
2490 |
+
<port id="0" precision="FP32">
|
2491 |
+
<dim>1</dim>
|
2492 |
+
<dim>1</dim>
|
2493 |
+
<dim>256</dim>
|
2494 |
+
<dim>256</dim>
|
2495 |
+
</port>
|
2496 |
+
<port id="1" precision="I64">
|
2497 |
+
<dim>4</dim>
|
2498 |
+
</port>
|
2499 |
+
</input>
|
2500 |
+
<output>
|
2501 |
+
<port id="2" precision="FP32" names="output">
|
2502 |
+
<dim>1</dim>
|
2503 |
+
<dim>1</dim>
|
2504 |
+
<dim>256</dim>
|
2505 |
+
<dim>256</dim>
|
2506 |
+
</port>
|
2507 |
+
</output>
|
2508 |
+
</layer>
|
2509 |
+
<layer id="151" name="output/sink_port_0" type="Result" version="opset1">
|
2510 |
+
<input>
|
2511 |
+
<port id="0" precision="FP32">
|
2512 |
+
<dim>1</dim>
|
2513 |
+
<dim>1</dim>
|
2514 |
+
<dim>256</dim>
|
2515 |
+
<dim>256</dim>
|
2516 |
+
</port>
|
2517 |
+
</input>
|
2518 |
+
</layer>
|
2519 |
+
</layers>
|
2520 |
+
<edges>
|
2521 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
2522 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
|
2523 |
+
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
|
2524 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
|
2525 |
+
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
|
2526 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
|
2527 |
+
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
|
2528 |
+
<edge from-layer="6" from-port="1" to-layer="16" to-port="1" />
|
2529 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
|
2530 |
+
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
|
2531 |
+
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
|
2532 |
+
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
|
2533 |
+
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
|
2534 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
|
2535 |
+
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
|
2536 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
|
2537 |
+
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
|
2538 |
+
<edge from-layer="16" from-port="2" to-layer="17" to-port="0" />
|
2539 |
+
<edge from-layer="17" from-port="1" to-layer="19" to-port="0" />
|
2540 |
+
<edge from-layer="17" from-port="1" to-layer="27" to-port="1" />
|
2541 |
+
<edge from-layer="18" from-port="0" to-layer="19" to-port="1" />
|
2542 |
+
<edge from-layer="19" from-port="2" to-layer="21" to-port="0" />
|
2543 |
+
<edge from-layer="20" from-port="0" to-layer="21" to-port="1" />
|
2544 |
+
<edge from-layer="21" from-port="2" to-layer="22" to-port="0" />
|
2545 |
+
<edge from-layer="22" from-port="1" to-layer="24" to-port="0" />
|
2546 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
|
2547 |
+
<edge from-layer="24" from-port="2" to-layer="26" to-port="0" />
|
2548 |
+
<edge from-layer="25" from-port="0" to-layer="26" to-port="1" />
|
2549 |
+
<edge from-layer="26" from-port="2" to-layer="27" to-port="0" />
|
2550 |
+
<edge from-layer="27" from-port="2" to-layer="28" to-port="0" />
|
2551 |
+
<edge from-layer="28" from-port="1" to-layer="30" to-port="0" />
|
2552 |
+
<edge from-layer="28" from-port="1" to-layer="39" to-port="0" />
|
2553 |
+
<edge from-layer="28" from-port="1" to-layer="68" to-port="0" />
|
2554 |
+
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
|
2555 |
+
<edge from-layer="30" from-port="2" to-layer="32" to-port="0" />
|
2556 |
+
<edge from-layer="31" from-port="0" to-layer="32" to-port="1" />
|
2557 |
+
<edge from-layer="32" from-port="2" to-layer="33" to-port="0" />
|
2558 |
+
<edge from-layer="33" from-port="1" to-layer="35" to-port="0" />
|
2559 |
+
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
|
2560 |
+
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
|
2561 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
|
2562 |
+
<edge from-layer="37" from-port="2" to-layer="42" to-port="0" />
|
2563 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
2564 |
+
<edge from-layer="39" from-port="2" to-layer="41" to-port="0" />
|
2565 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="1" />
|
2566 |
+
<edge from-layer="41" from-port="2" to-layer="42" to-port="1" />
|
2567 |
+
<edge from-layer="42" from-port="2" to-layer="43" to-port="0" />
|
2568 |
+
<edge from-layer="43" from-port="1" to-layer="45" to-port="0" />
|
2569 |
+
<edge from-layer="43" from-port="1" to-layer="53" to-port="1" />
|
2570 |
+
<edge from-layer="44" from-port="0" to-layer="45" to-port="1" />
|
2571 |
+
<edge from-layer="45" from-port="2" to-layer="47" to-port="0" />
|
2572 |
+
<edge from-layer="46" from-port="0" to-layer="47" to-port="1" />
|
2573 |
+
<edge from-layer="47" from-port="2" to-layer="48" to-port="0" />
|
2574 |
+
<edge from-layer="48" from-port="1" to-layer="50" to-port="0" />
|
2575 |
+
<edge from-layer="49" from-port="0" to-layer="50" to-port="1" />
|
2576 |
+
<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
|
2577 |
+
<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
|
2578 |
+
<edge from-layer="52" from-port="2" to-layer="53" to-port="0" />
|
2579 |
+
<edge from-layer="53" from-port="2" to-layer="54" to-port="0" />
|
2580 |
+
<edge from-layer="54" from-port="1" to-layer="55" to-port="0" />
|
2581 |
+
<edge from-layer="54" from-port="1" to-layer="67" to-port="0" />
|
2582 |
+
<edge from-layer="54" from-port="1" to-layer="79" to-port="0" />
|
2583 |
+
<edge from-layer="54" from-port="1" to-layer="70" to-port="0" />
|
2584 |
+
<edge from-layer="55" from-port="1" to-layer="59" to-port="0" />
|
2585 |
+
<edge from-layer="55" from-port="1" to-layer="63" to-port="0" />
|
2586 |
+
<edge from-layer="56" from-port="0" to-layer="59" to-port="1" />
|
2587 |
+
<edge from-layer="57" from-port="0" to-layer="59" to-port="2" />
|
2588 |
+
<edge from-layer="58" from-port="0" to-layer="59" to-port="3" />
|
2589 |
+
<edge from-layer="59" from-port="4" to-layer="61" to-port="0" />
|
2590 |
+
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
|
2591 |
+
<edge from-layer="61" from-port="2" to-layer="62" to-port="0" />
|
2592 |
+
<edge from-layer="61" from-port="2" to-layer="67" to-port="1" />
|
2593 |
+
<edge from-layer="62" from-port="1" to-layer="64" to-port="0" />
|
2594 |
+
<edge from-layer="63" from-port="1" to-layer="64" to-port="1" />
|
2595 |
+
<edge from-layer="64" from-port="2" to-layer="66" to-port="0" />
|
2596 |
+
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
|
2597 |
+
<edge from-layer="66" from-port="2" to-layer="67" to-port="2" />
|
2598 |
+
<edge from-layer="67" from-port="3" to-layer="68" to-port="1" />
|
2599 |
+
<edge from-layer="68" from-port="2" to-layer="111" to-port="0" />
|
2600 |
+
<edge from-layer="68" from-port="2" to-layer="100" to-port="0" />
|
2601 |
+
<edge from-layer="69" from-port="0" to-layer="70" to-port="1" />
|
2602 |
+
<edge from-layer="70" from-port="2" to-layer="72" to-port="0" />
|
2603 |
+
<edge from-layer="71" from-port="0" to-layer="72" to-port="1" />
|
2604 |
+
<edge from-layer="72" from-port="2" to-layer="73" to-port="0" />
|
2605 |
+
<edge from-layer="73" from-port="1" to-layer="75" to-port="0" />
|
2606 |
+
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
|
2607 |
+
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
|
2608 |
+
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
|
2609 |
+
<edge from-layer="77" from-port="2" to-layer="82" to-port="0" />
|
2610 |
+
<edge from-layer="78" from-port="0" to-layer="79" to-port="1" />
|
2611 |
+
<edge from-layer="79" from-port="2" to-layer="81" to-port="0" />
|
2612 |
+
<edge from-layer="80" from-port="0" to-layer="81" to-port="1" />
|
2613 |
+
<edge from-layer="81" from-port="2" to-layer="82" to-port="1" />
|
2614 |
+
<edge from-layer="82" from-port="2" to-layer="83" to-port="0" />
|
2615 |
+
<edge from-layer="83" from-port="1" to-layer="85" to-port="0" />
|
2616 |
+
<edge from-layer="83" from-port="1" to-layer="93" to-port="1" />
|
2617 |
+
<edge from-layer="84" from-port="0" to-layer="85" to-port="1" />
|
2618 |
+
<edge from-layer="85" from-port="2" to-layer="87" to-port="0" />
|
2619 |
+
<edge from-layer="86" from-port="0" to-layer="87" to-port="1" />
|
2620 |
+
<edge from-layer="87" from-port="2" to-layer="88" to-port="0" />
|
2621 |
+
<edge from-layer="88" from-port="1" to-layer="90" to-port="0" />
|
2622 |
+
<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
|
2623 |
+
<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
|
2624 |
+
<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
|
2625 |
+
<edge from-layer="92" from-port="2" to-layer="93" to-port="0" />
|
2626 |
+
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
|
2627 |
+
<edge from-layer="94" from-port="1" to-layer="95" to-port="0" />
|
2628 |
+
<edge from-layer="94" from-port="1" to-layer="110" to-port="0" />
|
2629 |
+
<edge from-layer="95" from-port="1" to-layer="99" to-port="0" />
|
2630 |
+
<edge from-layer="95" from-port="1" to-layer="106" to-port="0" />
|
2631 |
+
<edge from-layer="96" from-port="0" to-layer="99" to-port="1" />
|
2632 |
+
<edge from-layer="97" from-port="0" to-layer="99" to-port="2" />
|
2633 |
+
<edge from-layer="98" from-port="0" to-layer="99" to-port="3" />
|
2634 |
+
<edge from-layer="99" from-port="4" to-layer="104" to-port="0" />
|
2635 |
+
<edge from-layer="100" from-port="1" to-layer="103" to-port="0" />
|
2636 |
+
<edge from-layer="101" from-port="0" to-layer="103" to-port="1" />
|
2637 |
+
<edge from-layer="102" from-port="0" to-layer="103" to-port="2" />
|
2638 |
+
<edge from-layer="103" from-port="3" to-layer="104" to-port="1" />
|
2639 |
+
<edge from-layer="104" from-port="2" to-layer="105" to-port="0" />
|
2640 |
+
<edge from-layer="104" from-port="2" to-layer="110" to-port="1" />
|
2641 |
+
<edge from-layer="105" from-port="1" to-layer="107" to-port="0" />
|
2642 |
+
<edge from-layer="106" from-port="1" to-layer="107" to-port="1" />
|
2643 |
+
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
|
2644 |
+
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
|
2645 |
+
<edge from-layer="109" from-port="2" to-layer="110" to-port="2" />
|
2646 |
+
<edge from-layer="110" from-port="3" to-layer="111" to-port="1" />
|
2647 |
+
<edge from-layer="111" from-port="2" to-layer="114" to-port="0" />
|
2648 |
+
<edge from-layer="112" from-port="0" to-layer="114" to-port="1" />
|
2649 |
+
<edge from-layer="113" from-port="0" to-layer="114" to-port="2" />
|
2650 |
+
<edge from-layer="114" from-port="3" to-layer="116" to-port="0" />
|
2651 |
+
<edge from-layer="115" from-port="0" to-layer="116" to-port="1" />
|
2652 |
+
<edge from-layer="116" from-port="2" to-layer="118" to-port="0" />
|
2653 |
+
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
|
2654 |
+
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
|
2655 |
+
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
|
2656 |
+
<edge from-layer="120" from-port="2" to-layer="122" to-port="0" />
|
2657 |
+
<edge from-layer="120" from-port="2" to-layer="123" to-port="1" />
|
2658 |
+
<edge from-layer="121" from-port="0" to-layer="122" to-port="1" />
|
2659 |
+
<edge from-layer="122" from-port="2" to-layer="123" to-port="0" />
|
2660 |
+
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
|
2661 |
+
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
|
2662 |
+
<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
|
2663 |
+
<edge from-layer="126" from-port="0" to-layer="127" to-port="1" />
|
2664 |
+
<edge from-layer="127" from-port="2" to-layer="128" to-port="0" />
|
2665 |
+
<edge from-layer="128" from-port="1" to-layer="129" to-port="0" />
|
2666 |
+
<edge from-layer="129" from-port="1" to-layer="130" to-port="0" />
|
2667 |
+
<edge from-layer="129" from-port="1" to-layer="142" to-port="0" />
|
2668 |
+
<edge from-layer="130" from-port="1" to-layer="134" to-port="0" />
|
2669 |
+
<edge from-layer="130" from-port="1" to-layer="138" to-port="0" />
|
2670 |
+
<edge from-layer="131" from-port="0" to-layer="134" to-port="1" />
|
2671 |
+
<edge from-layer="132" from-port="0" to-layer="134" to-port="2" />
|
2672 |
+
<edge from-layer="133" from-port="0" to-layer="134" to-port="3" />
|
2673 |
+
<edge from-layer="134" from-port="4" to-layer="136" to-port="0" />
|
2674 |
+
<edge from-layer="135" from-port="0" to-layer="136" to-port="1" />
|
2675 |
+
<edge from-layer="136" from-port="2" to-layer="137" to-port="0" />
|
2676 |
+
<edge from-layer="136" from-port="2" to-layer="142" to-port="1" />
|
2677 |
+
<edge from-layer="137" from-port="1" to-layer="139" to-port="0" />
|
2678 |
+
<edge from-layer="138" from-port="1" to-layer="139" to-port="1" />
|
2679 |
+
<edge from-layer="139" from-port="2" to-layer="141" to-port="0" />
|
2680 |
+
<edge from-layer="140" from-port="0" to-layer="141" to-port="1" />
|
2681 |
+
<edge from-layer="141" from-port="2" to-layer="142" to-port="2" />
|
2682 |
+
<edge from-layer="142" from-port="3" to-layer="146" to-port="0" />
|
2683 |
+
<edge from-layer="143" from-port="0" to-layer="146" to-port="1" />
|
2684 |
+
<edge from-layer="144" from-port="0" to-layer="146" to-port="2" />
|
2685 |
+
<edge from-layer="145" from-port="0" to-layer="146" to-port="3" />
|
2686 |
+
<edge from-layer="146" from-port="4" to-layer="148" to-port="0" />
|
2687 |
+
<edge from-layer="147" from-port="0" to-layer="148" to-port="1" />
|
2688 |
+
<edge from-layer="148" from-port="2" to-layer="150" to-port="0" />
|
2689 |
+
<edge from-layer="149" from-port="0" to-layer="150" to-port="1" />
|
2690 |
+
<edge from-layer="150" from-port="2" to-layer="151" to-port="0" />
|
2691 |
+
</edges>
|
2692 |
+
<rt_info>
|
2693 |
+
<MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2694 |
+
<Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
|
2695 |
+
<conversion_parameters>
|
2696 |
+
<framework value="onnx" />
|
2697 |
+
<input_model value="DIR\model.onnx" />
|
2698 |
+
<model_name value="model" />
|
2699 |
+
<output_dir value="DIR" />
|
2700 |
+
</conversion_parameters>
|
2701 |
+
<legacy_frontend value="False" />
|
2702 |
+
</rt_info>
|
2703 |
+
</net>
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
anomalib[full]
|