Spaces:
Sleeping
Sleeping
Commit
·
5bfab10
1
Parent(s):
96d483e
added space app files
Browse files- README.md +2 -13
- app.py +292 -0
- config.py +113 -0
- dataset.py +184 -0
- grad_cam.py +83 -0
- images/000001.jpg +0 -0
- images/000002.jpg +0 -0
- images/000003.jpg +0 -0
- images/000004.jpg +0 -0
- images/000005.jpg +0 -0
- images/000006.jpg +0 -0
- images/000007.jpg +0 -0
- images/000008.jpg +0 -0
- images/000009.jpg +0 -0
- images/000010.jpg +0 -0
- images/000011.jpg +0 -0
- images/000012.jpg +0 -0
- images/000013.jpg +0 -0
- images/000014.jpg +0 -0
- images/000015.jpg +0 -0
- images/000016.jpg +0 -0
- images/000017.jpg +0 -0
- images/000018.jpg +0 -0
- images/000019.jpg +0 -0
- images/000020.jpg +0 -0
- images/000021.jpg +0 -0
- images/000022.jpg +0 -0
- images/000023.jpg +0 -0
- images/000024.jpg +0 -0
- images/000025.jpg +0 -0
- loss.py +149 -0
- main.py +86 -0
- models/YoloV3Lightning.py +378 -0
- requirements.txt +8 -0
- utils.py +625 -0
README.md
CHANGED
@@ -1,13 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: indigo
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.40.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# yolov3
|
2 |
+
S13 ERA V1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import List
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from pytorch_grad_cam import GradCAM
|
9 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
+
import io
|
12 |
+
from models import YoloV3Lightning
|
13 |
+
from utils import load_model_from_checkpoint
|
14 |
+
import utils
|
15 |
+
import config as cfg
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import matplotlib.patches as patches
|
18 |
+
from dataset import YOLODataset
|
19 |
+
from torch.utils.data import Dataset, DataLoader
|
20 |
+
from grad_cam import YoloGradCAM
|
21 |
+
|
22 |
+
device = torch.device('cpu')
|
23 |
+
dataset_mean, dataset_std = (0.4914, 0.4822, 0.4465), \
|
24 |
+
(0.2470, 0.2435, 0.2616)
|
25 |
+
model = YoloV3Lightning.YOLOv3LightningModel(num_classes=cfg.NUM_CLASSES, anchors=cfg.ANCHORS, S=cfg.S)
|
26 |
+
ckpt_file = 'ckpt_light.pth'
|
27 |
+
checkpoint = load_model_from_checkpoint(device, file_name=ckpt_file)
|
28 |
+
model.load_state_dict(checkpoint['model'], strict=False)
|
29 |
+
|
30 |
+
model.eval()
|
31 |
+
|
32 |
+
scaled_anchors = (
|
33 |
+
torch.tensor(cfg.ANCHORS)
|
34 |
+
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
35 |
+
).to(model.device)
|
36 |
+
|
37 |
+
cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], scaled_anchors=scaled_anchors, use_cuda=False)
|
38 |
+
'''cfg.IMG_DIR = cfg.DATASET + "/images/"
|
39 |
+
cfg.LABEL_DIR = cfg.DATASET + "/labels/"
|
40 |
+
eval_dataset = YOLODataset(
|
41 |
+
cfg.DATASET + "/25examples.csv",
|
42 |
+
transform=cfg.test_transforms,
|
43 |
+
S=[cfg.IMAGE_SIZE // 32, cfg.IMAGE_SIZE // 16, cfg.IMAGE_SIZE // 8],
|
44 |
+
img_dir=cfg.IMG_DIR,
|
45 |
+
label_dir=cfg.LABEL_DIR,
|
46 |
+
anchors=cfg.ANCHORS,
|
47 |
+
mosaic=False
|
48 |
+
)
|
49 |
+
eval_loader = DataLoader(
|
50 |
+
dataset=eval_dataset,
|
51 |
+
batch_size=cfg.BATCH_SIZE,
|
52 |
+
num_workers=cfg.NUM_WORKERS,
|
53 |
+
pin_memory=cfg.PIN_MEMORY,
|
54 |
+
shuffle=True,
|
55 |
+
drop_last=False,
|
56 |
+
)
|
57 |
+
|
58 |
+
scaled_anchors = (
|
59 |
+
torch.tensor(cfg.ANCHORS)
|
60 |
+
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
61 |
+
)
|
62 |
+
scaled_anchors = scaled_anchors.to(cfg.DEVICE)
|
63 |
+
|
64 |
+
utils.plot_examples(model, eval_loader, 0.5, 0.6, scaled_anchors)'''
|
65 |
+
|
66 |
+
sample_images = [
|
67 |
+
['images/000001.jpg'],
|
68 |
+
['images/000002.jpg'],
|
69 |
+
['images/000003.jpg'],
|
70 |
+
['images/000004.jpg'],
|
71 |
+
['images/000005.jpg'],
|
72 |
+
['images/000006.jpg'],
|
73 |
+
['images/000007.jpg'],
|
74 |
+
['images/000008.jpg'],
|
75 |
+
['images/000009.jpg'],
|
76 |
+
['images/000010.jpg'],
|
77 |
+
['images/000011.jpg'],
|
78 |
+
['images/000012.jpg'],
|
79 |
+
['images/000013.jpg'],
|
80 |
+
['images/000014.jpg'],
|
81 |
+
['images/000015.jpg'],
|
82 |
+
['images/000016.jpg'],
|
83 |
+
['images/000017.jpg'],
|
84 |
+
['images/000018.jpg'],
|
85 |
+
['images/000019.jpg'],
|
86 |
+
['images/000020.jpg'],
|
87 |
+
['images/000021.jpg'],
|
88 |
+
['images/000022.jpg'],
|
89 |
+
['images/000023.jpg'],
|
90 |
+
['images/000024.jpg'],
|
91 |
+
['images/000025.jpg']
|
92 |
+
]
|
93 |
+
|
94 |
+
with gr.Blocks() as app:
|
95 |
+
with gr.Row():
|
96 |
+
|
97 |
+
gr.Markdown(
|
98 |
+
"""
|
99 |
+
# YoloV3 App!
|
100 |
+
## Model is trained on PASCAL-VOC data to predict following classes -
|
101 |
+
""")
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
gr.HTML(
|
105 |
+
"""
|
106 |
+
<table>
|
107 |
+
<tr>
|
108 |
+
<th>aeroplane</th>
|
109 |
+
<th>bicycle</th>
|
110 |
+
<th>bird</th>
|
111 |
+
<th>boat</th>
|
112 |
+
<th>bottle</th>
|
113 |
+
<th>bus</th>
|
114 |
+
<th>car</th>
|
115 |
+
<th>cat</th>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<th>chair</th>
|
119 |
+
<th>cow</th>
|
120 |
+
<th>diningtable</th>
|
121 |
+
<th>dog</th>
|
122 |
+
<th>horse</th>
|
123 |
+
<th>motorbike</th>
|
124 |
+
<th>person</th>
|
125 |
+
<th>pottedplant</th>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<th>sheep</th>
|
129 |
+
<th>sofa</th>
|
130 |
+
<th>train</th>
|
131 |
+
<th>tvmonitor</th>
|
132 |
+
</tr>
|
133 |
+
|
134 |
+
</table>
|
135 |
+
<p>
|
136 |
+
<a href='https://github.com/piygr/yolov3/blob/main/models/YoloV3Lightning.py'>Click to see the model architecture / code </a>
|
137 |
+
|
138 |
+
</p>
|
139 |
+
"""
|
140 |
+
)
|
141 |
+
with gr.Row(visible=True) as top_pred_cls_col:
|
142 |
+
with gr.Column():
|
143 |
+
example_images = gr.Gallery(allow_preview=False, label='Select image ', info='',
|
144 |
+
value=[img[0] for img in sample_images], columns=3, rows=2)
|
145 |
+
|
146 |
+
with gr.Column():
|
147 |
+
top_pred_image = gr.Image(label='Upload Image or Select from the gallery')
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
top_class_btn = gr.Button("Submit", variant='primary')
|
151 |
+
tc_clear_btn = gr.ClearButton()
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
if_show_grad_cam = gr.Checkbox(value=True, label='Show Class Activation Map (What the model sees)?')
|
155 |
+
|
156 |
+
# with gr.Row(visible=True) as top_class_output:
|
157 |
+
with gr.Row(visible=True) as top_class_output:
|
158 |
+
top_class_output_img = gr.Image(interactive=False, label='Prediction Output')
|
159 |
+
with gr.Row(visible=True) as top_class_output:
|
160 |
+
grad_cam_out = gr.Image(interactive=False, visible=True, label='CAM Outcome')
|
161 |
+
|
162 |
+
|
163 |
+
def show_cam_output(input):
|
164 |
+
return {
|
165 |
+
grad_cam_out: gr.update(visible=input)
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
if_show_grad_cam.change(
|
170 |
+
show_cam_output,
|
171 |
+
if_show_grad_cam,
|
172 |
+
grad_cam_out
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
def clear_data():
|
177 |
+
return {
|
178 |
+
top_pred_image: None,
|
179 |
+
top_class_output_img: None
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
tc_clear_btn.click(clear_data, None, [top_pred_image, top_class_output_img])
|
184 |
+
|
185 |
+
|
186 |
+
def on_select(evt: gr.SelectData):
|
187 |
+
return {
|
188 |
+
top_pred_image: sample_images[evt.index][0]
|
189 |
+
}
|
190 |
+
|
191 |
+
|
192 |
+
example_images.select(on_select, None, top_pred_image)
|
193 |
+
|
194 |
+
|
195 |
+
def plot_image(image, boxes):
|
196 |
+
"""Plots predicted bounding boxes on the image"""
|
197 |
+
cmap = plt.get_cmap("tab20b")
|
198 |
+
class_labels = cfg.PASCAL_CLASSES
|
199 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
200 |
+
im = np.array(image)
|
201 |
+
height, width, _ = im.shape
|
202 |
+
|
203 |
+
# Create figure and axes
|
204 |
+
fig, ax = plt.subplots(1)
|
205 |
+
# Display the image
|
206 |
+
ax.imshow(im)
|
207 |
+
|
208 |
+
# box[0] is x midpoint, box[2] is width
|
209 |
+
# box[1] is y midpoint, box[3] is height
|
210 |
+
|
211 |
+
# Create a Rectangle patch
|
212 |
+
for box in boxes:
|
213 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
214 |
+
class_pred = box[0]
|
215 |
+
box = box[2:]
|
216 |
+
upper_left_x = box[0] - box[2] / 2
|
217 |
+
upper_left_y = box[1] - box[3] / 2
|
218 |
+
rect = patches.Rectangle(
|
219 |
+
(upper_left_x * width, upper_left_y * height),
|
220 |
+
box[2] * width,
|
221 |
+
box[3] * height,
|
222 |
+
linewidth=2,
|
223 |
+
edgecolor=colors[int(class_pred)],
|
224 |
+
facecolor="none",
|
225 |
+
)
|
226 |
+
# Add the patch to the Axes
|
227 |
+
ax.add_patch(rect)
|
228 |
+
plt.text(
|
229 |
+
upper_left_x * width,
|
230 |
+
upper_left_y * height,
|
231 |
+
s=class_labels[int(class_pred)],
|
232 |
+
color="white",
|
233 |
+
verticalalignment="top",
|
234 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
235 |
+
)
|
236 |
+
|
237 |
+
plt.savefig('output.png')
|
238 |
+
x = plt.show()
|
239 |
+
|
240 |
+
|
241 |
+
def predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.4, show_cam: bool = False,
|
242 |
+
transparency: float = 0.5) -> List[np.ndarray]:
|
243 |
+
with torch.no_grad():
|
244 |
+
transformed_image = cfg.grad_cam_transforms(image=image)["image"].unsqueeze(0)
|
245 |
+
output = model(transformed_image)
|
246 |
+
|
247 |
+
bboxes = [[] for _ in range(1)]
|
248 |
+
for i in range(3):
|
249 |
+
batch_size, A, S, _, _ = output[i].shape
|
250 |
+
anchor = scaled_anchors[i]
|
251 |
+
boxes_scale_i = utils.cells_to_bboxes(
|
252 |
+
output[i], anchor, S=S, is_preds=True
|
253 |
+
)
|
254 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
255 |
+
bboxes[idx] += box
|
256 |
+
|
257 |
+
nms_boxes = utils.non_max_suppression(
|
258 |
+
bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
|
259 |
+
)
|
260 |
+
|
261 |
+
plot_image(image, nms_boxes)
|
262 |
+
plotted_img = 'output.png'
|
263 |
+
if not show_cam:
|
264 |
+
return [plotted_img, None]
|
265 |
+
|
266 |
+
grayscale_cam = cam(transformed_image)[0, :, :]
|
267 |
+
img = cv2.resize(image, (416, 416))
|
268 |
+
img = np.float32(img) / 255
|
269 |
+
cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
|
270 |
+
return [plotted_img, cam_image]
|
271 |
+
|
272 |
+
|
273 |
+
def top_class_img_upload(input_img, if_cam):
|
274 |
+
if input_img is not None:
|
275 |
+
imgs = predict(input_img, show_cam=if_cam)
|
276 |
+
|
277 |
+
return {
|
278 |
+
top_class_output_img: imgs[0],
|
279 |
+
grad_cam_out: imgs[1]
|
280 |
+
}
|
281 |
+
|
282 |
+
|
283 |
+
top_class_btn.click(
|
284 |
+
top_class_img_upload,
|
285 |
+
[top_pred_image, if_show_grad_cam],
|
286 |
+
[top_class_output_img, grad_cam_out]
|
287 |
+
)
|
288 |
+
|
289 |
+
'''
|
290 |
+
Launch the app
|
291 |
+
'''
|
292 |
+
app.launch()
|
config.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import albumentations as A
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from albumentations.pytorch import ToTensorV2
|
6 |
+
|
7 |
+
SAMPLE_DATASET = '../../input/d/piygro/sample-pascal/PASCAL_VOC'
|
8 |
+
DATASET = 'PASCAL_VOC'
|
9 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
# seed_everything() # If you want deterministic behavior
|
11 |
+
NUM_WORKERS = 2
|
12 |
+
BATCH_SIZE = 16
|
13 |
+
IMAGE_SIZE = 416
|
14 |
+
NUM_CLASSES = 20
|
15 |
+
LEARNING_RATE = 1e-3
|
16 |
+
WEIGHT_DECAY = 1e-4
|
17 |
+
NUM_EPOCHS = 40
|
18 |
+
CONF_THRESHOLD = 0.05
|
19 |
+
MAP_IOU_THRESH = 0.5
|
20 |
+
NMS_IOU_THRESH = 0.45
|
21 |
+
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
|
22 |
+
PIN_MEMORY = True
|
23 |
+
LOAD_MODEL = False
|
24 |
+
SAVE_MODEL = True
|
25 |
+
CHECKPOINT_FILE = "checkpoint.ckpt.tar"
|
26 |
+
IMG_DIR = DATASET + "/images/"
|
27 |
+
LABEL_DIR = DATASET + "/labels/"
|
28 |
+
|
29 |
+
ANCHORS = [
|
30 |
+
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
|
31 |
+
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
|
32 |
+
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
|
33 |
+
] # Note these have been rescaled to be between [0, 1]
|
34 |
+
|
35 |
+
means = [0.485, 0.456, 0.406]
|
36 |
+
|
37 |
+
scale = 1.1
|
38 |
+
train_transforms = A.Compose(
|
39 |
+
[
|
40 |
+
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
|
41 |
+
A.PadIfNeeded(
|
42 |
+
min_height=int(IMAGE_SIZE * scale),
|
43 |
+
min_width=int(IMAGE_SIZE * scale),
|
44 |
+
border_mode=cv2.BORDER_CONSTANT,
|
45 |
+
),
|
46 |
+
A.Rotate(limit = 10, interpolation=1, border_mode=4),
|
47 |
+
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
|
48 |
+
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
|
49 |
+
A.OneOf(
|
50 |
+
[
|
51 |
+
A.ShiftScaleRotate(
|
52 |
+
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
|
53 |
+
),
|
54 |
+
# A.Affine(shear=15, p=0.5, mode="constant"),
|
55 |
+
],
|
56 |
+
p=1.0,
|
57 |
+
),
|
58 |
+
A.HorizontalFlip(p=0.5),
|
59 |
+
A.Blur(p=0.1),
|
60 |
+
A.CLAHE(p=0.1),
|
61 |
+
A.Posterize(p=0.1),
|
62 |
+
A.ToGray(p=0.1),
|
63 |
+
A.ChannelShuffle(p=0.05),
|
64 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
65 |
+
ToTensorV2(),
|
66 |
+
],
|
67 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],),
|
68 |
+
)
|
69 |
+
test_transforms = A.Compose(
|
70 |
+
[
|
71 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
72 |
+
A.PadIfNeeded(
|
73 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
74 |
+
),
|
75 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
76 |
+
ToTensorV2(),
|
77 |
+
],
|
78 |
+
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
|
79 |
+
)
|
80 |
+
|
81 |
+
grad_cam_transforms = A.Compose(
|
82 |
+
[
|
83 |
+
A.LongestMaxSize(max_size=IMAGE_SIZE),
|
84 |
+
A.PadIfNeeded(
|
85 |
+
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
86 |
+
),
|
87 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
88 |
+
ToTensorV2(),
|
89 |
+
],
|
90 |
+
)
|
91 |
+
|
92 |
+
PASCAL_CLASSES = [
|
93 |
+
"aeroplane",
|
94 |
+
"bicycle",
|
95 |
+
"bird",
|
96 |
+
"boat",
|
97 |
+
"bottle",
|
98 |
+
"bus",
|
99 |
+
"car",
|
100 |
+
"cat",
|
101 |
+
"chair",
|
102 |
+
"cow",
|
103 |
+
"diningtable",
|
104 |
+
"dog",
|
105 |
+
"horse",
|
106 |
+
"motorbike",
|
107 |
+
"person",
|
108 |
+
"pottedplant",
|
109 |
+
"sheep",
|
110 |
+
"sofa",
|
111 |
+
"train",
|
112 |
+
"tvmonitor"
|
113 |
+
]
|
dataset.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Creates a Pytorch dataset to load the Pascal VOC & MS COCO datasets
|
3 |
+
"""
|
4 |
+
import config as cfg
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
from utils import xywhn2xyxy, xyxy2xywhn
|
10 |
+
import random
|
11 |
+
|
12 |
+
from PIL import Image, ImageFile
|
13 |
+
from torch.utils.data import Dataset, DataLoader
|
14 |
+
from utils import (
|
15 |
+
cells_to_bboxes,
|
16 |
+
iou_width_height as iou,
|
17 |
+
non_max_suppression as nms,
|
18 |
+
plot_image
|
19 |
+
)
|
20 |
+
|
21 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
22 |
+
|
23 |
+
|
24 |
+
class YOLODataset(Dataset):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
csv_file,
|
28 |
+
img_dir,
|
29 |
+
label_dir,
|
30 |
+
anchors,
|
31 |
+
image_size=416,
|
32 |
+
S=[13, 26, 52],
|
33 |
+
C=20,
|
34 |
+
transform=None,
|
35 |
+
mosaic=True
|
36 |
+
):
|
37 |
+
self.annotations = pd.read_csv(csv_file)
|
38 |
+
self.img_dir = img_dir
|
39 |
+
self.label_dir = label_dir
|
40 |
+
self.image_size = image_size
|
41 |
+
self.mosaic_border = [image_size // 2, image_size // 2]
|
42 |
+
self.transform = transform
|
43 |
+
self.S = S
|
44 |
+
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2]) # for all 3 scales
|
45 |
+
self.num_anchors = self.anchors.shape[0]
|
46 |
+
self.num_anchors_per_scale = self.num_anchors // 3
|
47 |
+
self.C = C
|
48 |
+
self.ignore_iou_thresh = 0.5
|
49 |
+
self.mosaic = mosaic
|
50 |
+
|
51 |
+
def __len__(self):
|
52 |
+
return len(self.annotations)
|
53 |
+
|
54 |
+
def load_mosaic(self, index):
|
55 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
56 |
+
labels4 = []
|
57 |
+
s = self.image_size
|
58 |
+
yc, xc = (int(random.uniform(x, 2*s - x)) for x in self.mosaic_border) # mosaic center x, y
|
59 |
+
indices = [index] + random.choices(range(len(self)), k=3) # 3 additional image indices
|
60 |
+
random.shuffle(indices)
|
61 |
+
for i, index in enumerate(indices):
|
62 |
+
# Load image
|
63 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
64 |
+
bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
|
65 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
66 |
+
img = np.array(Image.open(img_path).convert("RGB"))
|
67 |
+
|
68 |
+
h, w = img.shape[0], img.shape[1]
|
69 |
+
labels = np.array(bboxes)
|
70 |
+
|
71 |
+
# place img in img4
|
72 |
+
if i == 0: # top left
|
73 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
74 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
75 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
76 |
+
elif i == 1: # top right
|
77 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
78 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
79 |
+
elif i == 2: # bottom left
|
80 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
81 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
82 |
+
elif i == 3: # bottom right
|
83 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
84 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
85 |
+
|
86 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
87 |
+
padw = x1a - x1b
|
88 |
+
padh = y1a - y1b
|
89 |
+
|
90 |
+
# Labels
|
91 |
+
if labels.size:
|
92 |
+
labels[:, :-1] = xywhn2xyxy(labels[:, :-1], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
93 |
+
labels4.append(labels)
|
94 |
+
|
95 |
+
# Concat/clip labels
|
96 |
+
labels4 = np.concatenate(labels4, 0)
|
97 |
+
for x in (labels4[:, :-1],):
|
98 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
99 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
100 |
+
labels4[:, :-1] = xyxy2xywhn(labels4[:, :-1], 2 * s, 2 * s)
|
101 |
+
labels4[:, :-1] = np.clip(labels4[:, :-1], 0, 1)
|
102 |
+
labels4 = labels4[labels4[:, 2] > 0]
|
103 |
+
labels4 = labels4[labels4[:, 3] > 0]
|
104 |
+
return img4, labels4
|
105 |
+
|
106 |
+
def __getitem__(self, index):
|
107 |
+
|
108 |
+
if self.mosaic and random.random() <= 0.75:
|
109 |
+
image, bboxes = self.load_mosaic(index)
|
110 |
+
else:
|
111 |
+
label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1])
|
112 |
+
bboxes = np.roll(np.loadtxt(fname=label_path, delimiter=" ", ndmin=2), 4, axis=1).tolist()
|
113 |
+
img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0])
|
114 |
+
image = np.array(Image.open(img_path).convert("RGB"))
|
115 |
+
|
116 |
+
if self.transform:
|
117 |
+
augmentations = self.transform(image=image, bboxes=bboxes)
|
118 |
+
image = augmentations["image"]
|
119 |
+
bboxes = augmentations["bboxes"]
|
120 |
+
|
121 |
+
# Below assumes 3 scale predictions (as paper) and same num of anchors per scale
|
122 |
+
targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
|
123 |
+
for box in bboxes:
|
124 |
+
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
|
125 |
+
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
|
126 |
+
x, y, width, height, class_label = box
|
127 |
+
has_anchor = [False] * 3 # each scale should have one anchor
|
128 |
+
for anchor_idx in anchor_indices:
|
129 |
+
scale_idx = anchor_idx // self.num_anchors_per_scale
|
130 |
+
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
|
131 |
+
S = self.S[scale_idx]
|
132 |
+
i, j = int(S * y), int(S * x) # which cell
|
133 |
+
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
|
134 |
+
if not anchor_taken and not has_anchor[scale_idx]:
|
135 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
|
136 |
+
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
|
137 |
+
width_cell, height_cell = (
|
138 |
+
width * S,
|
139 |
+
height * S,
|
140 |
+
) # can be greater than 1 since it's relative to cell
|
141 |
+
box_coordinates = torch.tensor(
|
142 |
+
[x_cell, y_cell, width_cell, height_cell]
|
143 |
+
)
|
144 |
+
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
|
145 |
+
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
|
146 |
+
has_anchor[scale_idx] = True
|
147 |
+
|
148 |
+
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
|
149 |
+
targets[scale_idx][anchor_on_scale, i, j, 0] = -1 # ignore prediction
|
150 |
+
|
151 |
+
return image, tuple(targets)
|
152 |
+
|
153 |
+
|
154 |
+
def validate_dataset():
|
155 |
+
anchors = cfg.ANCHORS
|
156 |
+
|
157 |
+
transform = cfg.test_transforms
|
158 |
+
|
159 |
+
dataset = YOLODataset(
|
160 |
+
cfg.SAMPLE_DATASET + "/25examples.csv",
|
161 |
+
cfg.SAMPLE_DATASET + "/images/",
|
162 |
+
cfg.SAMPLE_DATASET + "/labels/",
|
163 |
+
S=[13, 26, 52],
|
164 |
+
anchors=anchors,
|
165 |
+
transform=transform,
|
166 |
+
)
|
167 |
+
S = [13, 26, 52]
|
168 |
+
scaled_anchors = torch.tensor(anchors) / (
|
169 |
+
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
170 |
+
)
|
171 |
+
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
|
172 |
+
for x, y in loader:
|
173 |
+
boxes = []
|
174 |
+
|
175 |
+
for i in range(y[0].shape[1]):
|
176 |
+
anchor = scaled_anchors[i]
|
177 |
+
print(anchor.shape)
|
178 |
+
print(y[i].shape)
|
179 |
+
boxes += cells_to_bboxes(
|
180 |
+
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
|
181 |
+
)[0]
|
182 |
+
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
|
183 |
+
print(boxes)
|
184 |
+
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
|
grad_cam.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import utils
|
5 |
+
from pytorch_grad_cam.base_cam import BaseCAM
|
6 |
+
from pytorch_grad_cam.utils import get_2d_projection
|
7 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
8 |
+
|
9 |
+
class YoloGradCAM(BaseCAM):
|
10 |
+
def __init__(self,
|
11 |
+
model,
|
12 |
+
target_layers,
|
13 |
+
scaled_anchors,
|
14 |
+
use_cuda=False,
|
15 |
+
reshape_transform=None):
|
16 |
+
super(YoloGradCAM, self).__init__(model,
|
17 |
+
target_layers,
|
18 |
+
use_cuda,
|
19 |
+
reshape_transform,
|
20 |
+
uses_gradients=False)
|
21 |
+
|
22 |
+
self.scaled_anchors = scaled_anchors
|
23 |
+
|
24 |
+
def get_cam_image(self,
|
25 |
+
input_tensor: torch.Tensor,
|
26 |
+
target_layer: torch.nn.Module,
|
27 |
+
targets: List[torch.nn.Module],
|
28 |
+
activations: torch.Tensor,
|
29 |
+
grads: torch.Tensor,
|
30 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
31 |
+
return get_2d_projection(activations)
|
32 |
+
|
33 |
+
def forward(self,
|
34 |
+
input_tensor: torch.Tensor,
|
35 |
+
targets: List[torch.nn.Module],
|
36 |
+
eigen_smooth: bool = False) -> np.ndarray:
|
37 |
+
|
38 |
+
if self.cuda:
|
39 |
+
input_tensor = input_tensor.cuda()
|
40 |
+
|
41 |
+
if self.compute_input_gradient:
|
42 |
+
input_tensor = torch.autograd.Variable(input_tensor,
|
43 |
+
requires_grad=True)
|
44 |
+
|
45 |
+
outputs = self.activations_and_grads(input_tensor)
|
46 |
+
if targets is None:
|
47 |
+
bboxes = [[] for _ in range(1)]
|
48 |
+
for i in range(3):
|
49 |
+
batch_size, A, S, _, _ = outputs[i].shape
|
50 |
+
anchor = self.scaled_anchors[i]
|
51 |
+
boxes_scale_i = utils.cells_to_bboxes(
|
52 |
+
outputs[i], anchor, S=S, is_preds=True
|
53 |
+
)
|
54 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
55 |
+
bboxes[idx] += box
|
56 |
+
|
57 |
+
nms_boxes = utils.non_max_suppression(
|
58 |
+
bboxes[0], iou_threshold=0.5, threshold=0.4, box_format="midpoint",
|
59 |
+
)
|
60 |
+
# target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
|
61 |
+
target_categories = [box[0] for box in nms_boxes]
|
62 |
+
targets = [ClassifierOutputTarget(
|
63 |
+
category) for category in target_categories]
|
64 |
+
|
65 |
+
if self.uses_gradients:
|
66 |
+
self.model.zero_grad()
|
67 |
+
loss = sum([target(output)
|
68 |
+
for target, output in zip(targets, outputs)])
|
69 |
+
loss.backward(retain_graph=True)
|
70 |
+
|
71 |
+
# In most of the saliency attribution papers, the saliency is
|
72 |
+
# computed with a single target layer.
|
73 |
+
# Commonly it is the last convolutional layer.
|
74 |
+
# Here we support passing a list with multiple target layers.
|
75 |
+
# It will compute the saliency image for every image,
|
76 |
+
# and then aggregate them (with a default mean aggregation).
|
77 |
+
# This gives you more flexibility in case you just want to
|
78 |
+
# use all conv layers for example, all Batchnorm layers,
|
79 |
+
# or something else.
|
80 |
+
cam_per_layer = self.compute_cam_per_layer(input_tensor,
|
81 |
+
targets,
|
82 |
+
eigen_smooth)
|
83 |
+
return self.aggregate_multi_layers(cam_per_layer)
|
images/000001.jpg
ADDED
![]() |
images/000002.jpg
ADDED
![]() |
images/000003.jpg
ADDED
![]() |
images/000004.jpg
ADDED
![]() |
images/000005.jpg
ADDED
![]() |
images/000006.jpg
ADDED
![]() |
images/000007.jpg
ADDED
![]() |
images/000008.jpg
ADDED
![]() |
images/000009.jpg
ADDED
![]() |
images/000010.jpg
ADDED
![]() |
images/000011.jpg
ADDED
![]() |
images/000012.jpg
ADDED
![]() |
images/000013.jpg
ADDED
![]() |
images/000014.jpg
ADDED
![]() |
images/000015.jpg
ADDED
![]() |
images/000016.jpg
ADDED
![]() |
images/000017.jpg
ADDED
![]() |
images/000018.jpg
ADDED
![]() |
images/000019.jpg
ADDED
![]() |
images/000020.jpg
ADDED
![]() |
images/000021.jpg
ADDED
![]() |
images/000022.jpg
ADDED
![]() |
images/000023.jpg
ADDED
![]() |
images/000024.jpg
ADDED
![]() |
images/000025.jpg
ADDED
![]() |
loss.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of Yolo Loss Function similar to the one in Yolov3 paper,
|
3 |
+
the difference from what I can tell is I use CrossEntropy for the classes
|
4 |
+
instead of BinaryCrossEntropy.
|
5 |
+
"""
|
6 |
+
import random
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
from utils import intersection_over_union
|
11 |
+
import config as cfg
|
12 |
+
|
13 |
+
|
14 |
+
class YoloLoss(pl.LightningModule):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
self.mse = nn.MSELoss()
|
18 |
+
self.bce = nn.BCEWithLogitsLoss()
|
19 |
+
self.entropy = nn.CrossEntropyLoss()
|
20 |
+
self.sigmoid = nn.Sigmoid()
|
21 |
+
|
22 |
+
# Constants signifying how much to pay for each respective part of the loss
|
23 |
+
self.lambda_class = 1
|
24 |
+
self.lambda_noobj = 10
|
25 |
+
self.lambda_obj = 1
|
26 |
+
self.lambda_box = 10
|
27 |
+
|
28 |
+
self.scaled_anchors = (
|
29 |
+
torch.tensor(cfg.ANCHORS)
|
30 |
+
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, predictions_list, target_list, **kwargs):
|
34 |
+
|
35 |
+
anchors_list = kwargs.get('anchors_list', None)
|
36 |
+
if not anchors_list:
|
37 |
+
anchors_list = self.scaled_anchors
|
38 |
+
|
39 |
+
anchors_list = anchors_list.to(cfg.DEVICE)
|
40 |
+
|
41 |
+
box_loss = 0.0
|
42 |
+
object_loss = 0.0
|
43 |
+
no_object_loss = 0.0
|
44 |
+
class_loss = 0.0
|
45 |
+
|
46 |
+
for i in range(3):
|
47 |
+
target = target_list[i]
|
48 |
+
predictions = predictions_list[i]
|
49 |
+
anchors = anchors_list[i]
|
50 |
+
|
51 |
+
# Check where obj and noobj (we ignore if target == -1)
|
52 |
+
obj = target[..., 0] == 1 # in paper this is Iobj_i
|
53 |
+
noobj = target[..., 0] == 0 # in paper this is Inoobj_i
|
54 |
+
|
55 |
+
# ======================= #
|
56 |
+
# FOR NO OBJECT LOSS #
|
57 |
+
# ======================= #
|
58 |
+
|
59 |
+
no_object_loss += self.bce(
|
60 |
+
(predictions[..., 0:1][noobj]), (target[..., 0:1][noobj]),
|
61 |
+
)
|
62 |
+
|
63 |
+
# ==================== #
|
64 |
+
# FOR OBJECT LOSS #
|
65 |
+
# ==================== #
|
66 |
+
|
67 |
+
anchors = anchors.reshape(1, 3, 1, 1, 2)
|
68 |
+
box_preds = torch.cat([self.sigmoid(predictions[..., 1:3]), torch.exp(predictions[..., 3:5]) * anchors], dim=-1)
|
69 |
+
ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]).detach()
|
70 |
+
object_loss += self.mse(self.sigmoid(predictions[..., 0:1][obj]), ious * target[..., 0:1][obj])
|
71 |
+
|
72 |
+
# ======================== #
|
73 |
+
# FOR BOX COORDINATES #
|
74 |
+
# ======================== #
|
75 |
+
|
76 |
+
predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3]) # x,y coordinates
|
77 |
+
target[..., 3:5] = torch.log(
|
78 |
+
(1e-16 + target[..., 3:5] / anchors)
|
79 |
+
) # width, height coordinates
|
80 |
+
box_loss += self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj])
|
81 |
+
|
82 |
+
# ================== #
|
83 |
+
# FOR CLASS LOSS #
|
84 |
+
# ================== #
|
85 |
+
|
86 |
+
class_loss += self.entropy(
|
87 |
+
(predictions[..., 5:][obj]), (target[..., 5][obj].long()),
|
88 |
+
)
|
89 |
+
|
90 |
+
#print("__________________________________")
|
91 |
+
#print(self.lambda_box * box_loss)
|
92 |
+
#print(self.lambda_obj * object_loss)
|
93 |
+
#print(self.lambda_noobj * no_object_loss)
|
94 |
+
#print(self.lambda_class * class_loss)
|
95 |
+
#print("\n")
|
96 |
+
|
97 |
+
total_loss = (
|
98 |
+
self.lambda_box * box_loss
|
99 |
+
+ self.lambda_obj * object_loss
|
100 |
+
+ self.lambda_noobj * no_object_loss
|
101 |
+
+ self.lambda_class * class_loss
|
102 |
+
)
|
103 |
+
|
104 |
+
if kwargs.get('loss_dict'):
|
105 |
+
return dict(class_loss=self.lambda_class * class_loss,
|
106 |
+
no_object_loss=self.lambda_noobj * no_object_loss,
|
107 |
+
object_loss=self.lambda_obj * object_loss,
|
108 |
+
box_loss=self.lambda_box * box_loss,
|
109 |
+
total_loss=total_loss
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
return total_loss
|
113 |
+
|
114 |
+
|
115 |
+
def check_class_accuracy(self, predictions, target, threshold):
|
116 |
+
tot_class_preds, correct_class = 0, 0
|
117 |
+
tot_noobj, correct_noobj = 0, 0
|
118 |
+
tot_obj, correct_obj = 0, 0
|
119 |
+
|
120 |
+
y = target
|
121 |
+
out = predictions
|
122 |
+
|
123 |
+
for i in range(3):
|
124 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
125 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
126 |
+
|
127 |
+
correct_class += torch.sum(
|
128 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
129 |
+
)
|
130 |
+
tot_class_preds += torch.sum(obj)
|
131 |
+
|
132 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
133 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
134 |
+
tot_obj += torch.sum(obj)
|
135 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
136 |
+
tot_noobj += torch.sum(noobj)
|
137 |
+
|
138 |
+
return dict(
|
139 |
+
correct_class=correct_class,
|
140 |
+
correct_noobj=correct_noobj,
|
141 |
+
correct_obj=correct_obj,
|
142 |
+
total_class_preds=tot_class_preds,
|
143 |
+
total_noobj=tot_noobj,
|
144 |
+
total_obj=tot_obj
|
145 |
+
)
|
146 |
+
|
147 |
+
'''print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
|
148 |
+
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
|
149 |
+
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")'''
|
main.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataset import *
|
2 |
+
from models.YoloV3Lightning import *
|
3 |
+
import utils
|
4 |
+
|
5 |
+
def init(model, basic_sanity_check=True, find_max_lr=True, train=True, **kwargs):
|
6 |
+
if basic_sanity_check:
|
7 |
+
validate_dataset()
|
8 |
+
sanity_check(model)
|
9 |
+
print("Set basic_sanity_check to False to proceed")
|
10 |
+
else:
|
11 |
+
if find_max_lr:
|
12 |
+
optimizer = kwargs.get('optimizer')
|
13 |
+
criterion = kwargs.get('criterion')
|
14 |
+
train_loader = kwargs.get('train_loader')
|
15 |
+
utils.find_lr(model, optimizer, criterion, train_loader)
|
16 |
+
print("Set find_max_lr to False to proceed further")
|
17 |
+
else:
|
18 |
+
|
19 |
+
train_loader = kwargs.get('train_loader')
|
20 |
+
val_loader = kwargs.get('test_loader')
|
21 |
+
|
22 |
+
if train:
|
23 |
+
trainer = pl.Trainer(
|
24 |
+
precision=16,
|
25 |
+
max_epochs=cfg.NUM_EPOCHS,
|
26 |
+
accelerator='gpu'
|
27 |
+
)
|
28 |
+
|
29 |
+
cargs = {}
|
30 |
+
if cfg.LOAD_MODEL:
|
31 |
+
cargs = dict(ckpt_path=cfg.CHECKPOINT_FILE)
|
32 |
+
|
33 |
+
trainer.fit(model, train_loader, val_loader, **cargs)
|
34 |
+
else:
|
35 |
+
ckpt_file = kwargs.get('ckpt_file')
|
36 |
+
if ckpt_file:
|
37 |
+
checkpoint = utils.load_model_from_checkpoint(cfg.DEVICE, file_name=ckpt_file)
|
38 |
+
model.load_state_dict(checkpoint['model'], strict=False)
|
39 |
+
|
40 |
+
#-- Printing samples
|
41 |
+
model.to(cfg.DEVICE)
|
42 |
+
model.eval()
|
43 |
+
cfg.IMG_DIR = cfg.DATASET + "/images/"
|
44 |
+
cfg.LABEL_DIR = cfg.DATASET + "/labels/"
|
45 |
+
eval_dataset = YOLODataset(
|
46 |
+
cfg.DATASET + "/test.csv",
|
47 |
+
transform=cfg.test_transforms,
|
48 |
+
S=[cfg.IMAGE_SIZE // 32, cfg.IMAGE_SIZE // 16, cfg.IMAGE_SIZE // 8],
|
49 |
+
img_dir=cfg.IMG_DIR,
|
50 |
+
label_dir=cfg.LABEL_DIR,
|
51 |
+
anchors=cfg.ANCHORS,
|
52 |
+
mosaic=False
|
53 |
+
)
|
54 |
+
eval_loader = DataLoader(
|
55 |
+
dataset=eval_dataset,
|
56 |
+
batch_size=cfg.BATCH_SIZE,
|
57 |
+
num_workers=cfg.NUM_WORKERS,
|
58 |
+
pin_memory=cfg.PIN_MEMORY,
|
59 |
+
shuffle=True,
|
60 |
+
drop_last=False,
|
61 |
+
)
|
62 |
+
|
63 |
+
scaled_anchors = (
|
64 |
+
torch.tensor(cfg.ANCHORS)
|
65 |
+
* torch.tensor(cfg.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
66 |
+
)
|
67 |
+
scaled_anchors = scaled_anchors.to(cfg.DEVICE)
|
68 |
+
|
69 |
+
utils.plot_examples(model, eval_loader, 0.5, 0.6, scaled_anchors)
|
70 |
+
|
71 |
+
# -- Printing MAP
|
72 |
+
pred_boxes, true_boxes = utils.get_evaluation_bboxes(
|
73 |
+
eval_loader,
|
74 |
+
model,
|
75 |
+
iou_threshold=cfg.NMS_IOU_THRESH,
|
76 |
+
anchors=cfg.ANCHORS,
|
77 |
+
threshold=cfg.CONF_THRESHOLD,
|
78 |
+
)
|
79 |
+
mapval = utils.mean_average_precision(
|
80 |
+
pred_boxes,
|
81 |
+
true_boxes,
|
82 |
+
iou_threshold=cfg.MAP_IOU_THRESH,
|
83 |
+
box_format="midpoint",
|
84 |
+
num_classes=cfg.NUM_CLASSES,
|
85 |
+
)
|
86 |
+
print(f"MAP: {mapval.item()}")
|
models/YoloV3Lightning.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from pytorch_grad_cam import GradCAM
|
5 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
6 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
7 |
+
import numpy as np
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
from loss import YoloLoss
|
13 |
+
import config as cfg
|
14 |
+
|
15 |
+
"""
|
16 |
+
Information about architecture config:
|
17 |
+
Tuple is structured by (filters, kernel_size, stride)
|
18 |
+
Every conv is a same convolution.
|
19 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
20 |
+
"S" is for scale prediction block and computing the yolo loss
|
21 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
22 |
+
"""
|
23 |
+
config = [
|
24 |
+
(32, 3, 1),
|
25 |
+
(64, 3, 2),
|
26 |
+
["B", 1],
|
27 |
+
(128, 3, 2),
|
28 |
+
["B", 2],
|
29 |
+
(256, 3, 2),
|
30 |
+
["B", 8],
|
31 |
+
(512, 3, 2),
|
32 |
+
["B", 8],
|
33 |
+
(1024, 3, 2),
|
34 |
+
["B", 4], # To this point is Darknet-53
|
35 |
+
(512, 1, 1),
|
36 |
+
(1024, 3, 1),
|
37 |
+
"S",
|
38 |
+
(256, 1, 1),
|
39 |
+
"U",
|
40 |
+
(256, 1, 1),
|
41 |
+
(512, 3, 1),
|
42 |
+
"S",
|
43 |
+
(128, 1, 1),
|
44 |
+
"U",
|
45 |
+
(128, 1, 1),
|
46 |
+
(256, 3, 1),
|
47 |
+
"S",
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
class CNNBlock(nn.Module):
|
52 |
+
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
|
53 |
+
super().__init__()
|
54 |
+
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
|
55 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
56 |
+
self.leaky = nn.LeakyReLU(0.1)
|
57 |
+
self.use_bn_act = bn_act
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
if self.use_bn_act:
|
61 |
+
return self.leaky(self.bn(self.conv(x)))
|
62 |
+
else:
|
63 |
+
return self.conv(x)
|
64 |
+
|
65 |
+
|
66 |
+
class ResidualBlock(nn.Module):
|
67 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
68 |
+
super().__init__()
|
69 |
+
self.layers = nn.ModuleList()
|
70 |
+
for repeat in range(num_repeats):
|
71 |
+
self.layers += [
|
72 |
+
nn.Sequential(
|
73 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
74 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
75 |
+
)
|
76 |
+
]
|
77 |
+
|
78 |
+
self.use_residual = use_residual
|
79 |
+
self.num_repeats = num_repeats
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
for layer in self.layers:
|
83 |
+
if self.use_residual:
|
84 |
+
x = x + layer(x)
|
85 |
+
else:
|
86 |
+
x = layer(x)
|
87 |
+
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class ScalePrediction(nn.Module):
|
92 |
+
def __init__(self, in_channels, num_classes):
|
93 |
+
super().__init__()
|
94 |
+
self.pred = nn.Sequential(
|
95 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
96 |
+
CNNBlock(
|
97 |
+
2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1
|
98 |
+
),
|
99 |
+
)
|
100 |
+
self.num_classes = num_classes
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
return (
|
104 |
+
self.pred(x)
|
105 |
+
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
|
106 |
+
.permute(0, 1, 3, 4, 2)
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
class YOLOv3LightningModel(pl.LightningModule):
|
111 |
+
def __init__(self, in_channels=3, num_classes=20, anchors=None, S=None):
|
112 |
+
super().__init__()
|
113 |
+
self.num_classes = num_classes
|
114 |
+
self.in_channels = in_channels
|
115 |
+
self.layers = self._create_conv_layers()
|
116 |
+
self.anchor_list = (
|
117 |
+
torch.tensor(anchors)
|
118 |
+
* torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
|
119 |
+
)
|
120 |
+
|
121 |
+
self.criterion = YoloLoss()
|
122 |
+
|
123 |
+
self.metric = dict(
|
124 |
+
total_train_steps=0,
|
125 |
+
epoch_train_loss=[],
|
126 |
+
epoch_train_acc=[],
|
127 |
+
epoch_train_steps=0,
|
128 |
+
total_val_steps=0,
|
129 |
+
epoch_val_loss=[],
|
130 |
+
epoch_val_acc=[],
|
131 |
+
epoch_val_steps=0,
|
132 |
+
train_loss=[],
|
133 |
+
val_loss=[],
|
134 |
+
train_acc=[],
|
135 |
+
val_acc=[]
|
136 |
+
)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
outputs = [] # for each scale
|
140 |
+
route_connections = []
|
141 |
+
for layer in self.layers:
|
142 |
+
if isinstance(layer, ScalePrediction):
|
143 |
+
outputs.append(layer(x))
|
144 |
+
continue
|
145 |
+
|
146 |
+
x = layer(x)
|
147 |
+
|
148 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
149 |
+
route_connections.append(x)
|
150 |
+
|
151 |
+
elif isinstance(layer, nn.Upsample):
|
152 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
153 |
+
route_connections.pop()
|
154 |
+
|
155 |
+
return outputs
|
156 |
+
|
157 |
+
def _create_conv_layers(self):
|
158 |
+
layers = nn.ModuleList()
|
159 |
+
in_channels = self.in_channels
|
160 |
+
|
161 |
+
for module in config:
|
162 |
+
if isinstance(module, tuple):
|
163 |
+
out_channels, kernel_size, stride = module
|
164 |
+
layers.append(
|
165 |
+
CNNBlock(
|
166 |
+
in_channels,
|
167 |
+
out_channels,
|
168 |
+
kernel_size=kernel_size,
|
169 |
+
stride=stride,
|
170 |
+
padding=1 if kernel_size == 3 else 0,
|
171 |
+
)
|
172 |
+
)
|
173 |
+
in_channels = out_channels
|
174 |
+
|
175 |
+
elif isinstance(module, list):
|
176 |
+
num_repeats = module[1]
|
177 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
178 |
+
|
179 |
+
elif isinstance(module, str):
|
180 |
+
if module == "S":
|
181 |
+
layers += [
|
182 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
183 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
184 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
185 |
+
]
|
186 |
+
in_channels = in_channels // 2
|
187 |
+
|
188 |
+
elif module == "U":
|
189 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
190 |
+
in_channels = in_channels * 3
|
191 |
+
|
192 |
+
return layers
|
193 |
+
|
194 |
+
|
195 |
+
def get_layer(self, idx):
|
196 |
+
if idx < len(self.layers) and idx >= 0:
|
197 |
+
return self.layers[idx]
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
def training_step(self, train_batch, batch_idx):
|
202 |
+
x, target = train_batch
|
203 |
+
output = self.forward(x)
|
204 |
+
loss = self.criterion(output, target, loss_dict=True, anchor_list=self.anchor_list)
|
205 |
+
acc = self.criterion.check_class_accuracy(output, target, cfg.CONF_THRESHOLD)
|
206 |
+
|
207 |
+
self.metric['total_train_steps'] += 1
|
208 |
+
self.metric['epoch_train_steps'] += 1
|
209 |
+
self.metric['epoch_train_loss'].append(loss)
|
210 |
+
self.metric['epoch_train_acc'].append(acc)
|
211 |
+
|
212 |
+
self.log_dict({'train_loss': loss['total_loss']})
|
213 |
+
|
214 |
+
return loss['total_loss']
|
215 |
+
|
216 |
+
|
217 |
+
def validation_step(self, val_batch, batch_idx):
|
218 |
+
x, target = val_batch
|
219 |
+
output = self.forward(x)
|
220 |
+
loss = self.criterion(output, target, loss_dict=True, anchor_list=self.anchor_list)
|
221 |
+
acc = self.criterion.check_class_accuracy(output, target, cfg.CONF_THRESHOLD)
|
222 |
+
|
223 |
+
self.metric['total_val_steps'] += 1
|
224 |
+
self.metric['epoch_val_steps'] += 1
|
225 |
+
self.metric['epoch_val_loss'].append(loss)
|
226 |
+
self.metric['epoch_val_acc'].append(acc)
|
227 |
+
|
228 |
+
self.log_dict({'val_loss': loss['total_loss']})
|
229 |
+
|
230 |
+
|
231 |
+
def on_validation_epoch_end(self):
|
232 |
+
if self.metric['total_train_steps']:
|
233 |
+
print('Epoch ', self.current_epoch)
|
234 |
+
epoch_loss = 0
|
235 |
+
epoch_acc = dict(
|
236 |
+
correct_class=0,
|
237 |
+
correct_noobj=0,
|
238 |
+
correct_obj=0,
|
239 |
+
total_class_preds=0,
|
240 |
+
total_noobj=0,
|
241 |
+
total_obj=0
|
242 |
+
)
|
243 |
+
for i in range(self.metric['epoch_train_steps']):
|
244 |
+
lo = self.metric['epoch_train_loss'][i]
|
245 |
+
epoch_loss += lo['total_loss']
|
246 |
+
acc = self.metric['epoch_train_acc'][i]
|
247 |
+
epoch_acc['correct_class'] += acc['correct_class']
|
248 |
+
epoch_acc['correct_noobj'] += acc['correct_noobj']
|
249 |
+
epoch_acc['correct_obj'] += acc['correct_obj']
|
250 |
+
epoch_acc['total_class_preds'] += acc['total_class_preds']
|
251 |
+
epoch_acc['total_noobj'] += acc['total_noobj']
|
252 |
+
epoch_acc['total_obj'] += acc['total_obj']
|
253 |
+
|
254 |
+
|
255 |
+
print("Train -")
|
256 |
+
print(f"Class accuracy is: {(epoch_acc['correct_class']/(epoch_acc['total_class_preds']+1e-16))*100:2f}%")
|
257 |
+
print(f"No obj accuracy is: {(epoch_acc['correct_noobj']/(epoch_acc['total_noobj']+1e-16))*100:2f}%")
|
258 |
+
print(f"Obj accuracy is: {(epoch_acc['correct_obj']/(epoch_acc['total_obj']+1e-16))*100:2f}%")
|
259 |
+
print(f"Total loss: {(epoch_loss/(len(self.metric['epoch_train_loss'])+1e-16)):2f}")
|
260 |
+
|
261 |
+
self.metric['epoch_train_loss'] = []
|
262 |
+
self.metric['epoch_train_acc'] = []
|
263 |
+
self.metric['epoch_train_steps'] = 0
|
264 |
+
|
265 |
+
#---
|
266 |
+
epoch_loss = 0
|
267 |
+
epoch_acc = dict(
|
268 |
+
correct_class=0,
|
269 |
+
correct_noobj=0,
|
270 |
+
correct_obj=0,
|
271 |
+
total_class_preds=0,
|
272 |
+
total_noobj=0,
|
273 |
+
total_obj=0
|
274 |
+
)
|
275 |
+
for i in range(self.metric['epoch_val_steps']):
|
276 |
+
lo = self.metric['epoch_val_loss'][i]
|
277 |
+
epoch_loss += lo['total_loss']
|
278 |
+
acc = self.metric['epoch_val_acc'][i]
|
279 |
+
epoch_acc['correct_class'] += acc['correct_class']
|
280 |
+
epoch_acc['correct_noobj'] += acc['correct_noobj']
|
281 |
+
epoch_acc['correct_obj'] += acc['correct_obj']
|
282 |
+
epoch_acc['total_class_preds'] += acc['total_class_preds']
|
283 |
+
epoch_acc['total_noobj'] += acc['total_noobj']
|
284 |
+
epoch_acc['total_obj'] += acc['total_obj']
|
285 |
+
|
286 |
+
print("Validation -")
|
287 |
+
print(f"Class accuracy is: {(epoch_acc['correct_class']/(epoch_acc['total_class_preds']+1e-16))*100:2f}%")
|
288 |
+
print(f"No obj accuracy is: {(epoch_acc['correct_noobj']/(epoch_acc['total_noobj']+1e-16))*100:2f}%")
|
289 |
+
print(f"Obj accuracy is: {(epoch_acc['correct_obj']/(epoch_acc['total_obj']+1e-16))*100:2f}%")
|
290 |
+
print(f"Total loss: {(epoch_loss/(len(self.metric['epoch_val_loss'])+1e-16)):2f}")
|
291 |
+
|
292 |
+
self.metric['epoch_val_loss'] = []
|
293 |
+
self.metric['epoch_val_acc'] = []
|
294 |
+
self.metric['epoch_val_steps'] = 0
|
295 |
+
|
296 |
+
print("Creating checkpoint...")
|
297 |
+
self.trainer.save_checkpoint(cfg.CHECKPOINT_FILE)
|
298 |
+
|
299 |
+
|
300 |
+
def test_step(self, test_batch, batch_idx):
|
301 |
+
self.validation_step(test_batch, batch_idx)
|
302 |
+
|
303 |
+
def train_dataloader(self):
|
304 |
+
if not self.trainer.train_dataloader:
|
305 |
+
self.trainer.fit_loop.setup_data()
|
306 |
+
|
307 |
+
return self.trainer.train_dataloader
|
308 |
+
|
309 |
+
def configure_optimizers(self):
|
310 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=cfg.LEARNING_RATE, weight_decay=cfg.WEIGHT_DECAY)
|
311 |
+
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
|
312 |
+
max_lr=cfg.LEARNING_RATE,
|
313 |
+
epochs=self.trainer.max_epochs,
|
314 |
+
steps_per_epoch=len(self.train_dataloader()),
|
315 |
+
pct_start=8 / self.trainer.max_epochs,
|
316 |
+
div_factor=100,
|
317 |
+
final_div_factor=100,
|
318 |
+
three_phase=False,
|
319 |
+
verbose=False
|
320 |
+
)
|
321 |
+
return {
|
322 |
+
"optimizer": optimizer,
|
323 |
+
"lr_scheduler": {
|
324 |
+
"scheduler": scheduler,
|
325 |
+
'interval': 'step', # or 'epoch'
|
326 |
+
'frequency': 1
|
327 |
+
},
|
328 |
+
}
|
329 |
+
|
330 |
+
|
331 |
+
def plot_grad_cam(self, img, target_layers, grad_opacity=1.0):
|
332 |
+
mean, std = [0, 0, 0], [1, 1, 1]
|
333 |
+
|
334 |
+
cam = GradCAM(model=self, target_layers=target_layers)
|
335 |
+
|
336 |
+
transform = transforms.ToTensor()
|
337 |
+
img = transform(img)
|
338 |
+
|
339 |
+
if self.device != img.device:
|
340 |
+
img = img.to(self.device)
|
341 |
+
|
342 |
+
x = img.unsqueeze(0)
|
343 |
+
|
344 |
+
out = self.forward(img)
|
345 |
+
bboxes = []
|
346 |
+
#fig = plt.figure()
|
347 |
+
for i in range(count):
|
348 |
+
plt.subplot(int(count / 5), 5, i + 1)
|
349 |
+
plt.tight_layout()
|
350 |
+
|
351 |
+
targets = [ClassifierOutputTarget(pred_dict['ground_truths'][i].cpu().item())]
|
352 |
+
|
353 |
+
grayscale_cam = cam(input_tensor=pred_dict['images'][i][None, :].cpu(), targets=targets)
|
354 |
+
|
355 |
+
x = denormalize(pred_dict['images'][i].cpu(), mean, std)
|
356 |
+
|
357 |
+
image = np.array(255 * x, np.int16).transpose(1, 2, 0)
|
358 |
+
img_tensor = np.array(x, np.float16).transpose(1, 2, 0)
|
359 |
+
|
360 |
+
visualization = show_cam_on_image(img_tensor, grayscale_cam.transpose(1, 2, 0), use_rgb=True,
|
361 |
+
image_weight=(1.0 - grad_opacity) )
|
362 |
+
|
363 |
+
plt.imshow(image, vmin=0, vmax=255)
|
364 |
+
plt.imshow(visualization, vmin=0, vmax=255, alpha=grad_opacity)
|
365 |
+
plt.xticks([])
|
366 |
+
plt.yticks([])
|
367 |
+
|
368 |
+
title = get_data_label_name(pred_dict['ground_truths'][i].item()) + ' / ' + \
|
369 |
+
get_data_label_name(pred_dict['predicted_vals'][i].item())
|
370 |
+
plt.title(title, fontsize=8)
|
371 |
+
|
372 |
+
def sanity_check(model):
|
373 |
+
x = torch.randn((2, 3, cfg.IMAGE_SIZE, cfg.IMAGE_SIZE))
|
374 |
+
out = model(x)
|
375 |
+
assert model(x)[0].shape == (2, 3, cfg.IMAGE_SIZE // 32, cfg.IMAGE_SIZE // 32, cfg.NUM_CLASSES + 5)
|
376 |
+
assert model(x)[1].shape == (2, 3, cfg.IMAGE_SIZE // 16, cfg.IMAGE_SIZE // 16, cfg.NUM_CLASSES + 5)
|
377 |
+
assert model(x)[2].shape == (2, 3, cfg.IMAGE_SIZE // 8, cfg.IMAGE_SIZE // 8, cfg.NUM_CLASSES + 5)
|
378 |
+
print("Success!")
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torch-lr-finder
|
3 |
+
torchvision
|
4 |
+
pillow
|
5 |
+
gradio
|
6 |
+
grad-cam
|
7 |
+
numpy
|
8 |
+
pytorch-lightning
|
utils.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from torch_lr_finder import LRFinder
|
5 |
+
|
6 |
+
import config as cfg
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.patches as patches
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from collections import Counter
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def iou_width_height(boxes1, boxes2):
|
22 |
+
"""
|
23 |
+
Parameters:
|
24 |
+
boxes1 (tensor): width and height of the first bounding boxes
|
25 |
+
boxes2 (tensor): width and height of the second bounding boxes
|
26 |
+
Returns:
|
27 |
+
tensor: Intersection over union of the corresponding boxes
|
28 |
+
"""
|
29 |
+
intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
|
30 |
+
boxes1[..., 1], boxes2[..., 1]
|
31 |
+
)
|
32 |
+
union = (
|
33 |
+
boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
|
34 |
+
)
|
35 |
+
return intersection / union
|
36 |
+
|
37 |
+
|
38 |
+
def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
|
39 |
+
"""
|
40 |
+
Video explanation of this function:
|
41 |
+
https://youtu.be/XXYG5ZWtjj0
|
42 |
+
|
43 |
+
This function calculates intersection over union (iou) given pred boxes
|
44 |
+
and target boxes.
|
45 |
+
|
46 |
+
Parameters:
|
47 |
+
boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
|
48 |
+
boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
|
49 |
+
box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
tensor: Intersection over union for all examples
|
53 |
+
"""
|
54 |
+
|
55 |
+
if box_format == "midpoint":
|
56 |
+
box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
|
57 |
+
box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
|
58 |
+
box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
|
59 |
+
box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
|
60 |
+
box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
|
61 |
+
box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
|
62 |
+
box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
|
63 |
+
box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2
|
64 |
+
|
65 |
+
if box_format == "corners":
|
66 |
+
box1_x1 = boxes_preds[..., 0:1]
|
67 |
+
box1_y1 = boxes_preds[..., 1:2]
|
68 |
+
box1_x2 = boxes_preds[..., 2:3]
|
69 |
+
box1_y2 = boxes_preds[..., 3:4]
|
70 |
+
box2_x1 = boxes_labels[..., 0:1]
|
71 |
+
box2_y1 = boxes_labels[..., 1:2]
|
72 |
+
box2_x2 = boxes_labels[..., 2:3]
|
73 |
+
box2_y2 = boxes_labels[..., 3:4]
|
74 |
+
|
75 |
+
x1 = torch.max(box1_x1, box2_x1)
|
76 |
+
y1 = torch.max(box1_y1, box2_y1)
|
77 |
+
x2 = torch.min(box1_x2, box2_x2)
|
78 |
+
y2 = torch.min(box1_y2, box2_y2)
|
79 |
+
|
80 |
+
intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
|
81 |
+
box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
|
82 |
+
box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))
|
83 |
+
|
84 |
+
return intersection / (box1_area + box2_area - intersection + 1e-6)
|
85 |
+
|
86 |
+
|
87 |
+
def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
88 |
+
"""
|
89 |
+
Video explanation of this function:
|
90 |
+
https://youtu.be/YDkjWEN8jNA
|
91 |
+
|
92 |
+
Does Non Max Suppression given bboxes
|
93 |
+
|
94 |
+
Parameters:
|
95 |
+
bboxes (list): list of lists containing all bboxes with each bboxes
|
96 |
+
specified as [class_pred, prob_score, x1, y1, x2, y2]
|
97 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
98 |
+
threshold (float): threshold to remove predicted bboxes (independent of IoU)
|
99 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
list: bboxes after performing NMS given a specific IoU threshold
|
103 |
+
"""
|
104 |
+
|
105 |
+
assert type(bboxes) == list
|
106 |
+
|
107 |
+
bboxes = [box for box in bboxes if box[1] > threshold]
|
108 |
+
bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
|
109 |
+
bboxes_after_nms = []
|
110 |
+
|
111 |
+
while bboxes:
|
112 |
+
chosen_box = bboxes.pop(0)
|
113 |
+
|
114 |
+
bboxes = [
|
115 |
+
box
|
116 |
+
for box in bboxes
|
117 |
+
if box[0] != chosen_box[0]
|
118 |
+
or intersection_over_union(
|
119 |
+
torch.tensor(chosen_box[2:]),
|
120 |
+
torch.tensor(box[2:]),
|
121 |
+
box_format=box_format,
|
122 |
+
)
|
123 |
+
< iou_threshold
|
124 |
+
]
|
125 |
+
|
126 |
+
bboxes_after_nms.append(chosen_box)
|
127 |
+
|
128 |
+
return bboxes_after_nms
|
129 |
+
|
130 |
+
|
131 |
+
def mean_average_precision(
|
132 |
+
pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Video explanation of this function:
|
136 |
+
https://youtu.be/FppOzcDvaDI
|
137 |
+
|
138 |
+
This function calculates mean average precision (mAP)
|
139 |
+
|
140 |
+
Parameters:
|
141 |
+
pred_boxes (list): list of lists containing all bboxes with each bboxes
|
142 |
+
specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
|
143 |
+
true_boxes (list): Similar as pred_boxes except all the correct ones
|
144 |
+
iou_threshold (float): threshold where predicted bboxes is correct
|
145 |
+
box_format (str): "midpoint" or "corners" used to specify bboxes
|
146 |
+
num_classes (int): number of classes
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
float: mAP value across all classes given a specific IoU threshold
|
150 |
+
"""
|
151 |
+
|
152 |
+
# list storing all AP for respective classes
|
153 |
+
average_precisions = []
|
154 |
+
|
155 |
+
# used for numerical stability later on
|
156 |
+
epsilon = 1e-6
|
157 |
+
|
158 |
+
for c in range(num_classes):
|
159 |
+
detections = []
|
160 |
+
ground_truths = []
|
161 |
+
|
162 |
+
# Go through all predictions and targets,
|
163 |
+
# and only add the ones that belong to the
|
164 |
+
# current class c
|
165 |
+
for detection in pred_boxes:
|
166 |
+
if detection[1] == c:
|
167 |
+
detections.append(detection)
|
168 |
+
|
169 |
+
for true_box in true_boxes:
|
170 |
+
if true_box[1] == c:
|
171 |
+
ground_truths.append(true_box)
|
172 |
+
|
173 |
+
# find the amount of bboxes for each training example
|
174 |
+
# Counter here finds how many ground truth bboxes we get
|
175 |
+
# for each training example, so let's say img 0 has 3,
|
176 |
+
# img 1 has 5 then we will obtain a dictionary with:
|
177 |
+
# amount_bboxes = {0:3, 1:5}
|
178 |
+
amount_bboxes = Counter([gt[0] for gt in ground_truths])
|
179 |
+
|
180 |
+
# We then go through each key, val in this dictionary
|
181 |
+
# and convert to the following (w.r.t same example):
|
182 |
+
# ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
|
183 |
+
for key, val in amount_bboxes.items():
|
184 |
+
amount_bboxes[key] = torch.zeros(val)
|
185 |
+
|
186 |
+
# sort by box probabilities which is index 2
|
187 |
+
detections.sort(key=lambda x: x[2], reverse=True)
|
188 |
+
TP = torch.zeros((len(detections)))
|
189 |
+
FP = torch.zeros((len(detections)))
|
190 |
+
total_true_bboxes = len(ground_truths)
|
191 |
+
|
192 |
+
# If none exists for this class then we can safely skip
|
193 |
+
if total_true_bboxes == 0:
|
194 |
+
continue
|
195 |
+
|
196 |
+
for detection_idx, detection in enumerate(detections):
|
197 |
+
# Only take out the ground_truths that have the same
|
198 |
+
# training idx as detection
|
199 |
+
ground_truth_img = [
|
200 |
+
bbox for bbox in ground_truths if bbox[0] == detection[0]
|
201 |
+
]
|
202 |
+
|
203 |
+
num_gts = len(ground_truth_img)
|
204 |
+
best_iou = 0
|
205 |
+
|
206 |
+
for idx, gt in enumerate(ground_truth_img):
|
207 |
+
iou = intersection_over_union(
|
208 |
+
torch.tensor(detection[3:]),
|
209 |
+
torch.tensor(gt[3:]),
|
210 |
+
box_format=box_format,
|
211 |
+
)
|
212 |
+
|
213 |
+
if iou > best_iou:
|
214 |
+
best_iou = iou
|
215 |
+
best_gt_idx = idx
|
216 |
+
|
217 |
+
if best_iou > iou_threshold:
|
218 |
+
# only detect ground truth detection once
|
219 |
+
if amount_bboxes[detection[0]][best_gt_idx] == 0:
|
220 |
+
# true positive and add this bounding box to seen
|
221 |
+
TP[detection_idx] = 1
|
222 |
+
amount_bboxes[detection[0]][best_gt_idx] = 1
|
223 |
+
else:
|
224 |
+
FP[detection_idx] = 1
|
225 |
+
|
226 |
+
# if IOU is lower then the detection is a false positive
|
227 |
+
else:
|
228 |
+
FP[detection_idx] = 1
|
229 |
+
|
230 |
+
TP_cumsum = torch.cumsum(TP, dim=0)
|
231 |
+
FP_cumsum = torch.cumsum(FP, dim=0)
|
232 |
+
recalls = TP_cumsum / (total_true_bboxes + epsilon)
|
233 |
+
precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
|
234 |
+
precisions = torch.cat((torch.tensor([1]), precisions))
|
235 |
+
recalls = torch.cat((torch.tensor([0]), recalls))
|
236 |
+
# torch.trapz for numerical integration
|
237 |
+
average_precisions.append(torch.trapz(precisions, recalls))
|
238 |
+
|
239 |
+
return sum(average_precisions) / len(average_precisions)
|
240 |
+
|
241 |
+
|
242 |
+
def plot_image(image, boxes):
|
243 |
+
"""Plots predicted bounding boxes on the image"""
|
244 |
+
cmap = plt.get_cmap("tab20b")
|
245 |
+
class_labels = cfg.COCO_LABELS if cfg.DATASET=='COCO' else cfg.PASCAL_CLASSES
|
246 |
+
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
|
247 |
+
im = np.array(image)
|
248 |
+
height, width, _ = im.shape
|
249 |
+
|
250 |
+
# Create figure and axes
|
251 |
+
fig, ax = plt.subplots(1)
|
252 |
+
# Display the image
|
253 |
+
ax.imshow(im)
|
254 |
+
|
255 |
+
# box[0] is x midpoint, box[2] is width
|
256 |
+
# box[1] is y midpoint, box[3] is height
|
257 |
+
|
258 |
+
# Create a Rectangle patch
|
259 |
+
for box in boxes:
|
260 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
261 |
+
class_pred = box[0]
|
262 |
+
box = box[2:]
|
263 |
+
upper_left_x = box[0] - box[2] / 2
|
264 |
+
upper_left_y = box[1] - box[3] / 2
|
265 |
+
rect = patches.Rectangle(
|
266 |
+
(upper_left_x * width, upper_left_y * height),
|
267 |
+
box[2] * width,
|
268 |
+
box[3] * height,
|
269 |
+
linewidth=2,
|
270 |
+
edgecolor=colors[int(class_pred)],
|
271 |
+
facecolor="none",
|
272 |
+
)
|
273 |
+
# Add the patch to the Axes
|
274 |
+
ax.add_patch(rect)
|
275 |
+
plt.text(
|
276 |
+
upper_left_x * width,
|
277 |
+
upper_left_y * height,
|
278 |
+
s=class_labels[int(class_pred)],
|
279 |
+
color="white",
|
280 |
+
verticalalignment="top",
|
281 |
+
bbox={"color": colors[int(class_pred)], "pad": 0},
|
282 |
+
)
|
283 |
+
|
284 |
+
plt.show()
|
285 |
+
|
286 |
+
|
287 |
+
def get_evaluation_bboxes(
|
288 |
+
loader,
|
289 |
+
model,
|
290 |
+
iou_threshold,
|
291 |
+
anchors,
|
292 |
+
threshold,
|
293 |
+
box_format="midpoint",
|
294 |
+
device="cuda",
|
295 |
+
):
|
296 |
+
# make sure model is in eval before get bboxes
|
297 |
+
model.eval()
|
298 |
+
train_idx = 0
|
299 |
+
all_pred_boxes = []
|
300 |
+
all_true_boxes = []
|
301 |
+
for batch_idx, (x, labels) in enumerate(tqdm(loader)):
|
302 |
+
x = x.to(device)
|
303 |
+
|
304 |
+
with torch.no_grad():
|
305 |
+
predictions = model(x)
|
306 |
+
|
307 |
+
batch_size = x.shape[0]
|
308 |
+
bboxes = [[] for _ in range(batch_size)]
|
309 |
+
for i in range(3):
|
310 |
+
S = predictions[i].shape[2]
|
311 |
+
anchor = torch.tensor([*anchors[i]]).to(device) * S
|
312 |
+
boxes_scale_i = cells_to_bboxes(
|
313 |
+
predictions[i], anchor, S=S, is_preds=True
|
314 |
+
)
|
315 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
316 |
+
bboxes[idx] += box
|
317 |
+
|
318 |
+
# we just want one bbox for each label, not one for each scale
|
319 |
+
true_bboxes = cells_to_bboxes(
|
320 |
+
labels[2], anchor, S=S, is_preds=False
|
321 |
+
)
|
322 |
+
|
323 |
+
for idx in range(batch_size):
|
324 |
+
nms_boxes = non_max_suppression(
|
325 |
+
bboxes[idx],
|
326 |
+
iou_threshold=iou_threshold,
|
327 |
+
threshold=threshold,
|
328 |
+
box_format=box_format,
|
329 |
+
)
|
330 |
+
|
331 |
+
for nms_box in nms_boxes:
|
332 |
+
all_pred_boxes.append([train_idx] + nms_box)
|
333 |
+
|
334 |
+
for box in true_bboxes[idx]:
|
335 |
+
if box[1] > threshold:
|
336 |
+
all_true_boxes.append([train_idx] + box)
|
337 |
+
|
338 |
+
train_idx += 1
|
339 |
+
|
340 |
+
model.train()
|
341 |
+
return all_pred_boxes, all_true_boxes
|
342 |
+
|
343 |
+
|
344 |
+
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
345 |
+
"""
|
346 |
+
Scales the predictions coming from the model to
|
347 |
+
be relative to the entire image such that they for example later
|
348 |
+
can be plotted or.
|
349 |
+
INPUT:
|
350 |
+
predictions: tensor of size (N, 3, S, S, num_classes+5)
|
351 |
+
anchors: the anchors used for the predictions
|
352 |
+
S: the number of cells the image is divided in on the width (and height)
|
353 |
+
is_preds: whether the input is predictions or the true bounding boxes
|
354 |
+
OUTPUT:
|
355 |
+
converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
|
356 |
+
object score, bounding box coordinates
|
357 |
+
"""
|
358 |
+
BATCH_SIZE = predictions.shape[0]
|
359 |
+
num_anchors = len(anchors)
|
360 |
+
box_predictions = predictions[..., 1:5]
|
361 |
+
if is_preds:
|
362 |
+
anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
|
363 |
+
box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
|
364 |
+
box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
|
365 |
+
scores = torch.sigmoid(predictions[..., 0:1])
|
366 |
+
best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
|
367 |
+
else:
|
368 |
+
scores = predictions[..., 0:1]
|
369 |
+
best_class = predictions[..., 5:6]
|
370 |
+
|
371 |
+
cell_indices = (
|
372 |
+
torch.arange(S)
|
373 |
+
.repeat(predictions.shape[0], 3, S, 1)
|
374 |
+
.unsqueeze(-1)
|
375 |
+
.to(predictions.device)
|
376 |
+
)
|
377 |
+
x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
|
378 |
+
y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
|
379 |
+
w_h = 1 / S * box_predictions[..., 2:4]
|
380 |
+
converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1).reshape(BATCH_SIZE, num_anchors * S * S, 6)
|
381 |
+
return converted_bboxes.tolist()
|
382 |
+
|
383 |
+
def check_class_accuracy(model, loader, threshold):
|
384 |
+
model.eval()
|
385 |
+
tot_class_preds, correct_class = 0, 0
|
386 |
+
tot_noobj, correct_noobj = 0, 0
|
387 |
+
tot_obj, correct_obj = 0, 0
|
388 |
+
|
389 |
+
for idx, (x, y) in enumerate(tqdm(loader)):
|
390 |
+
x = x.to(cfg.DEVICE)
|
391 |
+
with torch.no_grad():
|
392 |
+
out = model(x)
|
393 |
+
|
394 |
+
for i in range(3):
|
395 |
+
y[i] = y[i].to(cfg.DEVICE)
|
396 |
+
obj = y[i][..., 0] == 1 # in paper this is Iobj_i
|
397 |
+
noobj = y[i][..., 0] == 0 # in paper this is Iobj_i
|
398 |
+
|
399 |
+
correct_class += torch.sum(
|
400 |
+
torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
|
401 |
+
)
|
402 |
+
tot_class_preds += torch.sum(obj)
|
403 |
+
|
404 |
+
obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
|
405 |
+
correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
|
406 |
+
tot_obj += torch.sum(obj)
|
407 |
+
correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
|
408 |
+
tot_noobj += torch.sum(noobj)
|
409 |
+
|
410 |
+
print(f"Class accuracy is: {(correct_class/(tot_class_preds+1e-16))*100:2f}%")
|
411 |
+
print(f"No obj accuracy is: {(correct_noobj/(tot_noobj+1e-16))*100:2f}%")
|
412 |
+
print(f"Obj accuracy is: {(correct_obj/(tot_obj+1e-16))*100:2f}%")
|
413 |
+
model.train()
|
414 |
+
|
415 |
+
|
416 |
+
def get_mean_std(loader):
|
417 |
+
# var[X] = E[X**2] - E[X]**2
|
418 |
+
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0
|
419 |
+
|
420 |
+
for data, _ in tqdm(loader):
|
421 |
+
channels_sum += torch.mean(data, dim=[0, 2, 3])
|
422 |
+
channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
|
423 |
+
num_batches += 1
|
424 |
+
|
425 |
+
mean = channels_sum / num_batches
|
426 |
+
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
|
427 |
+
|
428 |
+
return mean, std
|
429 |
+
|
430 |
+
def get_loaders(train_csv_path, test_csv_path):
|
431 |
+
from dataset import YOLODataset
|
432 |
+
|
433 |
+
IMAGE_SIZE = cfg.IMAGE_SIZE
|
434 |
+
train_dataset = YOLODataset(
|
435 |
+
train_csv_path,
|
436 |
+
transform=cfg.train_transforms,
|
437 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
438 |
+
img_dir=cfg.IMG_DIR,
|
439 |
+
label_dir=cfg.LABEL_DIR,
|
440 |
+
anchors=cfg.ANCHORS,
|
441 |
+
)
|
442 |
+
test_dataset = YOLODataset(
|
443 |
+
test_csv_path,
|
444 |
+
transform=cfg.test_transforms,
|
445 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
446 |
+
img_dir=cfg.IMG_DIR,
|
447 |
+
label_dir=cfg.LABEL_DIR,
|
448 |
+
anchors=cfg.ANCHORS,
|
449 |
+
)
|
450 |
+
train_loader = DataLoader(
|
451 |
+
dataset=train_dataset,
|
452 |
+
batch_size=cfg.BATCH_SIZE,
|
453 |
+
num_workers=cfg.NUM_WORKERS,
|
454 |
+
pin_memory=cfg.PIN_MEMORY,
|
455 |
+
shuffle=True,
|
456 |
+
drop_last=False,
|
457 |
+
)
|
458 |
+
test_loader = DataLoader(
|
459 |
+
dataset=test_dataset,
|
460 |
+
batch_size=cfg.BATCH_SIZE,
|
461 |
+
num_workers=cfg.NUM_WORKERS,
|
462 |
+
pin_memory=cfg.PIN_MEMORY,
|
463 |
+
shuffle=False,
|
464 |
+
drop_last=False,
|
465 |
+
)
|
466 |
+
|
467 |
+
train_eval_dataset = YOLODataset(
|
468 |
+
train_csv_path,
|
469 |
+
transform=cfg.test_transforms,
|
470 |
+
S=[IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8],
|
471 |
+
img_dir=cfg.IMG_DIR,
|
472 |
+
label_dir=cfg.LABEL_DIR,
|
473 |
+
anchors=cfg.ANCHORS,
|
474 |
+
)
|
475 |
+
train_eval_loader = DataLoader(
|
476 |
+
dataset=train_eval_dataset,
|
477 |
+
batch_size=cfg.BATCH_SIZE,
|
478 |
+
num_workers=cfg.NUM_WORKERS,
|
479 |
+
pin_memory=cfg.PIN_MEMORY,
|
480 |
+
shuffle=False,
|
481 |
+
drop_last=False,
|
482 |
+
)
|
483 |
+
|
484 |
+
return train_loader, test_loader, train_eval_loader
|
485 |
+
|
486 |
+
|
487 |
+
def seed_everything(seed=42):
|
488 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
489 |
+
random.seed(seed)
|
490 |
+
np.random.seed(seed)
|
491 |
+
torch.manual_seed(seed)
|
492 |
+
torch.cuda.manual_seed(seed)
|
493 |
+
torch.cuda.manual_seed_all(seed)
|
494 |
+
torch.backends.cudnn.deterministic = True
|
495 |
+
torch.backends.cudnn.benchmark = False
|
496 |
+
|
497 |
+
|
498 |
+
def clip_coords(boxes, img_shape):
|
499 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
500 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
501 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
502 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
503 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
504 |
+
|
505 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
506 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
507 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
508 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
509 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
510 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
511 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
512 |
+
return y
|
513 |
+
|
514 |
+
|
515 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
516 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
517 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
518 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
519 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
520 |
+
return y
|
521 |
+
|
522 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
523 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
524 |
+
if clip:
|
525 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
526 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
527 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
528 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
529 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
530 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
531 |
+
return y
|
532 |
+
|
533 |
+
def clip_boxes(boxes, shape):
|
534 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
535 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
536 |
+
boxes[..., 0].clamp_(0, shape[1]) # x1
|
537 |
+
boxes[..., 1].clamp_(0, shape[0]) # y1
|
538 |
+
boxes[..., 2].clamp_(0, shape[1]) # x2
|
539 |
+
boxes[..., 3].clamp_(0, shape[0]) # y2
|
540 |
+
else: # np.array (faster grouped)
|
541 |
+
boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2
|
542 |
+
boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2
|
543 |
+
|
544 |
+
|
545 |
+
def find_lr(model, optimizer, criterion, data_loader):
|
546 |
+
lr_finder = LRFinder(model, optimizer, criterion)
|
547 |
+
lr_finder.range_test(data_loader, end_lr=100, num_iter=100)
|
548 |
+
_, best_lr = lr_finder.plot() # to inspect the loss-learning rate graph
|
549 |
+
lr_finder.reset()
|
550 |
+
|
551 |
+
def load_model_from_checkpoint(device, file_name='ckpt_light.pth'):
|
552 |
+
checkpoint = torch.load(file_name, map_location=device)
|
553 |
+
|
554 |
+
return checkpoint
|
555 |
+
|
556 |
+
def plot_examples(model, loader, iou_threshold, threshold, anchors):
|
557 |
+
|
558 |
+
print(anchors.device)
|
559 |
+
x, y = next(iter(loader))
|
560 |
+
x = x.to(cfg.DEVICE)
|
561 |
+
out = model(x)
|
562 |
+
bboxes = [[] for _ in range(x.shape[0])]
|
563 |
+
for i in range(3):
|
564 |
+
batch_size, A, S, _, _ = out[i].shape
|
565 |
+
anchor = anchors[i]
|
566 |
+
boxes_scale_i = cells_to_bboxes(
|
567 |
+
out[i], anchor, S=S, is_preds=True
|
568 |
+
)
|
569 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
570 |
+
bboxes[idx] += box
|
571 |
+
|
572 |
+
for i in range(batch_size // 4):
|
573 |
+
nms_boxes = non_max_suppression(
|
574 |
+
bboxes[i], iou_threshold=iou_threshold, threshold=threshold, box_format="midpoint",
|
575 |
+
)
|
576 |
+
plot_image(x[i].permute(1, 2, 0).detach().cpu(), nms_boxes)
|
577 |
+
|
578 |
+
|
579 |
+
def draw_predictions(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
|
580 |
+
"""Plots predicted bounding boxes on the image"""
|
581 |
+
|
582 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
|
583 |
+
|
584 |
+
im = np.array(image)
|
585 |
+
height, width, _ = im.shape
|
586 |
+
bbox_thick = 2 #int(0.6 * (height + width) / 600)
|
587 |
+
|
588 |
+
# Create a Rectangle patch
|
589 |
+
for box in boxes:
|
590 |
+
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
|
591 |
+
class_pred = box[0]
|
592 |
+
conf = box[1]
|
593 |
+
box = box[2:]
|
594 |
+
upper_left_x = box[0] - box[2] / 2
|
595 |
+
upper_left_y = box[1] - box[3] / 2
|
596 |
+
|
597 |
+
x1 = int(upper_left_x * width)
|
598 |
+
y1 = int(upper_left_y * height)
|
599 |
+
|
600 |
+
x2 = x1 + int(box[2] * width)
|
601 |
+
y2 = y1 + int(box[3] * height)
|
602 |
+
|
603 |
+
cv2.rectangle(
|
604 |
+
image,
|
605 |
+
(x1, y1), (x2, y2),
|
606 |
+
color=colors[int(class_pred)],
|
607 |
+
thickness=bbox_thick
|
608 |
+
)
|
609 |
+
text = f"{class_labels[int(class_pred)]}" #: {conf:.2f}"
|
610 |
+
t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
|
611 |
+
c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
|
612 |
+
|
613 |
+
cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
|
614 |
+
cv2.putText(
|
615 |
+
image,
|
616 |
+
text,
|
617 |
+
(x1, y1 - 2),
|
618 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
619 |
+
0.7,
|
620 |
+
(0, 0, 0),
|
621 |
+
bbox_thick // 2,
|
622 |
+
lineType=cv2.LINE_AA,
|
623 |
+
)
|
624 |
+
|
625 |
+
return image
|