Spaces:
Sleeping
Sleeping
File size: 4,688 Bytes
6917a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import pandas as pd
import numpy as np
import clip
import gradio as gr
from utils import *
import os
# Load the open CLIP model
model, preprocess = clip.load("ViT-B/32", device=device)
from pathlib import Path
# Download from Github Releases
if not Path('unsplash-dataset/photo_ids.csv').exists():
os.system('''wget https://github.com/haltakov/natural-language-image-search/releases/download/1.0.0/photo_ids.csv -O unsplash-dataset/photo_ids.csv''')
if not Path('unsplash-dataset/features.npy').exists():
os.system('''wget https://github.com/haltakov/natural-language-image-search/releases/download/1.0.0/features.npy - O unsplash-dataset/features.npy''')
# Load the photo IDs
photo_ids = pd.read_csv("unsplash-dataset/photo_ids.csv")
photo_ids = list(photo_ids['photo_id'])
# Load the features vectors
photo_features = np.load("unsplash-dataset/features.npy")
# Convert features to Tensors: Float32 on CPU and Float16 on GPU
if device == "cpu":
photo_features = torch.from_numpy(photo_features).float().to(device)
else:
photo_features = torch.from_numpy(photo_features).to(device)
# Print some statistics
print(f"Photos loaded: {len(photo_ids)}")
def search_by_text_and_photo(query_text, query_img, query_photo_id=None, photo_weight=0.5):
# Encode the search query
if not query_text and not query_photo_id:
return []
text_features = encode_search_query(model, query_text)
if query_photo_id:
# Find the feature vector for the specified photo ID
query_photo_index = photo_ids.index(query_photo_id)
query_photo_features = photo_features[query_photo_index]
# Combine the test and photo queries and normalize again
search_features = text_features + query_photo_features * photo_weight
search_features /= search_features.norm(dim=-1, keepdim=True)
# Find the best match
best_photo_ids = find_best_matches(search_features, photo_features, photo_ids, 10)
elif query_img:
query_photo_features = model.encode_image(query_img)
query_photo_features = query_photo_features / query_photo_features.norm(dim=1, keepdim=True)
# Combine the test and photo queries and normalize again
search_features = text_features + query_photo_features * photo_weight
search_features /= search_features.norm(dim=-1, keepdim=True)
# Find the best match
best_photo_ids = find_best_matches(search_features, photo_features, photo_ids, 10)
else:
# Display the results
print("Test search result")
best_photo_ids = search_unslash(query_text, photo_features, photo_ids, 10)
return best_photo_ids
with gr.Blocks() as app:
with gr.Row():
gr.Markdown(
"""
# CLIP Image Search Engine!
### Enter search query or/and input image to find the similar images from the database -
""")
with gr.Row(visible=True):
with gr.Column():
with gr.Row():
search_text = gr.Textbox(value='', placeholder='Search..', label='Enter Your Query')
with gr.Row():
submit_btn = gr.Button("Submit", variant='primary')
clear_btn = gr.ClearButton()
with gr.Column():
search_image = gr.Image(label='Upload Image or Select from results')
with gr.Row(visible=True):
output_images = gr.Gallery(allow_preview=False, label='Results.. ', info='',
value=[], columns=5, rows=2)
output_image_ids = gr.State([])
def clear_data():
return {
search_image: None,
output_images: None,
search_text: None
}
clear_btn.click(clear_data, None, [search_image, output_images, search_text])
def on_select(evt: gr.SelectData, output_image_ids):
return {
search_image: f"https://unsplash.com/photos/{output_image_ids[evt.index]}/download?w=100"
}
output_images.select(on_select, output_image_ids, search_image)
def func_search(query, img):
best_photo_ids = search_by_text_and_photo(query, img)
img_urls = []
for p_id in best_photo_ids:
url = f"https://unsplash.com/photos/{p_id}/download?w=100"
img_urls.append(url)
valid_images = filter_invalid_urls(img_urls, best_photo_ids)
return {
output_image_ids: valid_images['image_ids'],
output_images: valid_images['image_urls']
}
submit_btn.click(
func_search,
[search_text, search_image],
[output_images, output_image_ids]
)
'''
Launch the app
'''
app.launch()
|