phyloforfun commited on
Commit
ff6cbfc
·
1 Parent(s): b769563

file upload

Browse files
Files changed (1) hide show
  1. app.py +25 -25
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import streamlit as st
2
- import yaml, os, json, random, time, re
3
  import matplotlib.pyplot as plt
4
  import plotly.graph_objs as go
5
  import numpy as np
@@ -276,7 +276,20 @@ def create_space_saver():
276
  st.session_state.config['leafmachine']['project']['delete_temps_keep_VVE'] = st.checkbox("Delete Temporary Files (KEEP files required for VoucherVisionEditor)", st.session_state.config['leafmachine']['project'].get('delete_temps_keep_VVE', False))
277
  st.session_state.config['leafmachine']['project']['delete_all_temps'] = st.checkbox("Keep only the final transcription file", st.session_state.config['leafmachine']['project'].get('delete_all_temps', False),help="*WARNING:* This limits your ability to do quality assurance. This will delete all folders created by VoucherVision, leaving only the `transcription.xlsx` file.")
278
 
 
 
 
 
 
 
 
279
 
 
 
 
 
 
 
280
 
281
 
282
  # def create_private_file():
@@ -1051,7 +1064,7 @@ def content_tab_settings():
1051
 
1052
  ### Input Images Local
1053
  with col_local_1:
1054
- st.session_state.config['leafmachine']['project']['dir_images_local'] = st.text_input("Input images directory", st.session_state.config['leafmachine']['project'].get('dir_images_local', ''))
1055
  st.session_state.config['leafmachine']['project']['continue_run_from_partial_xlsx'] = st.text_input("Continue run from partially completed project XLSX", st.session_state.config['leafmachine']['project'].get('continue_run_from_partial_xlsx', ''), disabled=True)
1056
  st.write("---")
1057
  st.subheader('LLM Version')
@@ -1073,29 +1086,16 @@ def content_tab_settings():
1073
  st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", versions, index=versions.index(selected_version))
1074
 
1075
  with col_local_2:
1076
- uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True)
1077
- for uploaded_file in uploaded_files:
1078
- print(uploaded_file)
1079
- bytes_data = uploaded_file.read()
1080
- st.write("filename:", uploaded_file.name)
1081
- st.write(bytes_data)
1082
- # if st.session_state.config['leafmachine']['LLM_version'] in ["GPT 4", "GPT 3.5", "Azure GPT 4", "Azure GPT 3.5",]:
1083
- # st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", ["Version 1", "Version 1 No Domain Knowledge", "Version 2"], index=["Version 1", "Version 1 No Domain Knowledge", "Version 2"].index(st.session_state.config['leafmachine']['project'].get('prompt_version', "Version 2")))
1084
- # elif st.session_state.config['leafmachine']['LLM_version'] in ["PaLM 2",]:
1085
- # st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", ["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"], index=["Version 1 PaLM 2", "Version 1 PaLM 2 No Domain Knowledge", "Version 2 PaLM 2"].index(st.session_state.config['leafmachine']['project'].get('prompt_version', "Version 2 PaLM 2")))
1086
-
1087
- ### Modules
1088
- # with col_m1:
1089
- # st.session_state.config['leafmachine']['modules']['specimen_crop'] = st.checkbox("Specimen Close-up", st.session_state.config['leafmachine']['modules'].get('specimen_crop', True),disabled=True)
1090
-
1091
- ### cropped_components
1092
- # with col_cropped_1:
1093
- # st.session_state.config['leafmachine']['cropped_components']['do_save_cropped_annotations'] = st.checkbox("Save cropped components as images", st.session_state.config['leafmachine']['cropped_components'].get('do_save_cropped_annotations', True), disabled=True)
1094
- # st.session_state.config['leafmachine']['cropped_components']['save_per_image'] = st.checkbox("Save cropped components grouped by specimen", st.session_state.config['leafmachine']['cropped_components'].get('save_per_image', False), disabled=True)
1095
- # st.session_state.config['leafmachine']['cropped_components']['save_per_annotation_class'] = st.checkbox("Save cropped components grouped by type", st.session_state.config['leafmachine']['cropped_components'].get('save_per_annotation_class', True), disabled=True)
1096
- # st.session_state.config['leafmachine']['cropped_components']['binarize_labels'] = st.checkbox("Binarize labels", st.session_state.config['leafmachine']['cropped_components'].get('binarize_labels', False), disabled=True)
1097
- # st.session_state.config['leafmachine']['cropped_components']['binarize_labels_skeletonize'] = st.checkbox("Binarize and skeletonize labels", st.session_state.config['leafmachine']['cropped_components'].get('binarize_labels_skeletonize', False), disabled=True)
1098
-
1099
  with col_cropped_1:
1100
  default_crops = st.session_state.config['leafmachine']['cropped_components'].get('save_cropped_annotations', ['leaf_whole'])
1101
  st.write("Prior to transcription, use LeafMachine2 to crop all labels from input images to create label collages for each specimen image. (Requires GPU)")
 
1
  import streamlit as st
2
+ import yaml, os, json, random, time, re, shutil
3
  import matplotlib.pyplot as plt
4
  import plotly.graph_objs as go
5
  import numpy as np
 
276
  st.session_state.config['leafmachine']['project']['delete_temps_keep_VVE'] = st.checkbox("Delete Temporary Files (KEEP files required for VoucherVisionEditor)", st.session_state.config['leafmachine']['project'].get('delete_temps_keep_VVE', False))
277
  st.session_state.config['leafmachine']['project']['delete_all_temps'] = st.checkbox("Keep only the final transcription file", st.session_state.config['leafmachine']['project'].get('delete_all_temps', False),help="*WARNING:* This limits your ability to do quality assurance. This will delete all folders created by VoucherVision, leaving only the `transcription.xlsx` file.")
278
 
279
+ def save_uploaded_file(directory, img_file):
280
+ if not os.path.exists(directory):
281
+ os.makedirs(directory)
282
+ # Assuming the uploaded file is an image
283
+ with Image.open(img_file) as image:
284
+ # Save the image with a jpg extension
285
+ image.save(os.path.join(directory, img_file.name), "JPG")
286
 
287
+ def delete_directory(dir_path):
288
+ try:
289
+ shutil.rmtree(dir_path)
290
+ st.success(f"Deleted folder: {dir_path}")
291
+ except OSError as e:
292
+ st.error(f"Error: {dir_path} : {e.strerror}")
293
 
294
 
295
  # def create_private_file():
 
1064
 
1065
  ### Input Images Local
1066
  with col_local_1:
1067
+ st.session_state.config['leafmachine']['project']['dir_images_local'] = st.session_state['dir_uploaded_images'] #st.text_input("Input images directory", st.session_state.config['leafmachine']['project'].get('dir_images_local', ''))
1068
  st.session_state.config['leafmachine']['project']['continue_run_from_partial_xlsx'] = st.text_input("Continue run from partially completed project XLSX", st.session_state.config['leafmachine']['project'].get('continue_run_from_partial_xlsx', ''), disabled=True)
1069
  st.write("---")
1070
  st.subheader('LLM Version')
 
1086
  st.session_state.config['leafmachine']['project']['prompt_version'] = st.selectbox("Prompt Version", versions, index=versions.index(selected_version))
1087
 
1088
  with col_local_2:
1089
+ st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
1090
+ uploaded_files = st.file_uploader("Upload Images", type=['jpg', 'jpeg'], accept_multiple_files=True)
1091
+ if uploaded_files:
1092
+ delete_directory(st.session_state['dir_uploaded_images'])
1093
+ st.session_state['dir_uploaded_images'] = os.path.join(st.session_state.dir_home,'uploads')
1094
+ validate_dir(st.session_state['dir_uploaded_images'])
1095
+ for uploaded_file in uploaded_files:
1096
+ print(uploaded_file)
1097
+ save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
1098
+
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
  with col_cropped_1:
1100
  default_crops = st.session_state.config['leafmachine']['cropped_components'].get('save_cropped_annotations', ['leaf_whole'])
1101
  st.write("Prior to transcription, use LeafMachine2 to crop all labels from input images to create label collages for each specimen image. (Requires GPU)")