Spaces:
Running
Running
phyloforfun
commited on
Commit
·
67f7ed6
1
Parent(s):
0f3589f
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
Browse files- app.py +2 -1
- vouchervision/OCR_GPT4.py +32 -0
- vouchervision/OCR_Gemini.py +175 -0
- vouchervision/OCR_google_cloud_vision.py +8 -4
- vouchervision/OCR_llava.py +3 -2
- vouchervision/model_maps.py +20 -6
- vouchervision/utils_hf.py +36 -18
app.py
CHANGED
@@ -42,6 +42,7 @@ if 'config' not in st.session_state:
|
|
42 |
st.session_state.config, st.session_state.dir_home = build_VV_config(loaded_cfg=None)
|
43 |
setup_streamlit_config(st.session_state.dir_home)
|
44 |
|
|
|
45 |
|
46 |
########################################################################################################
|
47 |
### Global constants ####
|
@@ -280,7 +281,7 @@ def content_input_images(col_left, col_right):
|
|
280 |
# Handle PDF files
|
281 |
file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
|
282 |
# Convert each page of the PDF to an image
|
283 |
-
n_pages = convert_pdf_to_jpg(file_path, st.session_state['dir_uploaded_images'], dpi=st.session_state.config['leafmachine']['project']['dir_images_local'])
|
284 |
# Update the input list for each page image
|
285 |
converted_files = os.listdir(st.session_state['dir_uploaded_images'])
|
286 |
for file_name in converted_files:
|
|
|
42 |
st.session_state.config, st.session_state.dir_home = build_VV_config(loaded_cfg=None)
|
43 |
setup_streamlit_config(st.session_state.dir_home)
|
44 |
|
45 |
+
# st.session_state['is_hf'] = True
|
46 |
|
47 |
########################################################################################################
|
48 |
### Global constants ####
|
|
|
281 |
# Handle PDF files
|
282 |
file_path = save_uploaded_file(st.session_state['dir_uploaded_images'], uploaded_file)
|
283 |
# Convert each page of the PDF to an image
|
284 |
+
n_pages = convert_pdf_to_jpg(file_path, st.session_state['dir_uploaded_images'], dpi=200)#st.session_state.config['leafmachine']['project']['dir_images_local'])
|
285 |
# Update the input list for each page image
|
286 |
converted_files = os.listdir(st.session_state['dir_uploaded_images'])
|
287 |
for file_name in converted_files:
|
vouchervision/OCR_GPT4.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.prompts import PromptTemplate
|
2 |
+
from langchain_core.output_parsers import JsonOutputParser
|
3 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
4 |
+
|
5 |
+
class Transcription(BaseModel):
|
6 |
+
Transcription_Printed_Text: str = Field(description="The transcription of all printed text in the image.")
|
7 |
+
Transcription_Handwritten_Text: str = Field(description="The transcription of all handwritten text in the image.")
|
8 |
+
|
9 |
+
class OCRGPT4VisionPreview:
|
10 |
+
def __init__(self, logger, api_key, endpoint_url="https://gpt-4-vision-preview-api.com/ocr"):
|
11 |
+
self.logger = logger
|
12 |
+
self.api_key = api_key
|
13 |
+
self.endpoint_url = endpoint_url
|
14 |
+
self.parser = JsonOutputParser(pydantic_object=Transcription)
|
15 |
+
|
16 |
+
def transcribe_image(self, image_file):
|
17 |
+
self.logger.start_monitoring_usage()
|
18 |
+
|
19 |
+
headers = {"Authorization": f"Bearer {self.api_key}"}
|
20 |
+
files = {'image': open(image_file, 'rb')}
|
21 |
+
response = requests.post(self.endpoint_url, headers=headers, files=files)
|
22 |
+
|
23 |
+
if response.status_code == 200:
|
24 |
+
json_response = response.json()
|
25 |
+
transcription = self.parser.parse(json_response)
|
26 |
+
else:
|
27 |
+
self.logger.log_error("Failed to transcribe image")
|
28 |
+
transcription = {"Transcription": "Error"}
|
29 |
+
|
30 |
+
usage_report = self.logger.stop_monitoring_report_usage()
|
31 |
+
|
32 |
+
return transcription, usage_report
|
vouchervision/OCR_Gemini.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.messages import HumanMessage
|
2 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
3 |
+
from langchain_core.output_parsers import JsonOutputParser
|
4 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
5 |
+
import requests, logging, os, vertexai, json
|
6 |
+
from PIL import Image as PILImage
|
7 |
+
from io import BytesIO
|
8 |
+
import http.client
|
9 |
+
import typing
|
10 |
+
import urllib.request
|
11 |
+
from google.oauth2 import service_account
|
12 |
+
from vertexai.preview.generative_models import GenerativeModel, Image
|
13 |
+
|
14 |
+
class Transcription(BaseModel):
|
15 |
+
Transcription_Printed_Text: str = Field(description="The transcription of all printed text in the image.")
|
16 |
+
Transcription_Handwritten_Text: str = Field(description="The transcription of all handwritten text in the image.")
|
17 |
+
|
18 |
+
class OCRGeminiProVision:
|
19 |
+
def __init__(self, logger, model_name="gemini-pro-vision"):
|
20 |
+
self.logger = logger
|
21 |
+
self.llm = GenerativeModel(model_name)
|
22 |
+
|
23 |
+
# self.llm = ChatGoogleGenerativeAI(model=model_name)
|
24 |
+
self.parser = JsonOutputParser(pydantic_object=Transcription)
|
25 |
+
|
26 |
+
def image_to_vertex_image(self, image_path: str) -> Image:
|
27 |
+
"""Converts a local image or image URL to a Vertex AI Image object."""
|
28 |
+
if image_path.startswith("http"):
|
29 |
+
# Load image from URL
|
30 |
+
with urllib.request.urlopen(image_path) as response:
|
31 |
+
response = typing.cast(http.client.HTTPResponse, response)
|
32 |
+
image_bytes = response.read()
|
33 |
+
else:
|
34 |
+
# Load image from local file
|
35 |
+
with open(image_path, 'rb') as img_file:
|
36 |
+
image_bytes = img_file.read()
|
37 |
+
|
38 |
+
return Image.from_bytes(image_bytes)
|
39 |
+
|
40 |
+
def combine_json_values(self, data, separator=" "):
|
41 |
+
"""
|
42 |
+
Recursively traverses through a JSON-like dictionary or list,
|
43 |
+
combining all the values into a single string with a given separator.
|
44 |
+
|
45 |
+
:return: A single string containing all values from the input.
|
46 |
+
"""
|
47 |
+
# Base case for strings, directly return the string
|
48 |
+
if isinstance(data, str):
|
49 |
+
return data
|
50 |
+
|
51 |
+
# If the data is a dictionary, iterate through its values
|
52 |
+
elif isinstance(data, dict):
|
53 |
+
combined_string = separator.join(self.combine_json_values(v, separator) for v in data.values())
|
54 |
+
|
55 |
+
# If the data is a list, iterate through its elements
|
56 |
+
elif isinstance(data, list):
|
57 |
+
combined_string = separator.join(self.combine_json_values(item, separator) for item in data)
|
58 |
+
|
59 |
+
# For other data types (e.g., numbers), convert to string directly
|
60 |
+
else:
|
61 |
+
combined_string = str(data)
|
62 |
+
|
63 |
+
return combined_string
|
64 |
+
|
65 |
+
def transcribe_image(self, image_file, prompt):
|
66 |
+
# Load the image
|
67 |
+
image = self.image_to_vertex_image(image_file)
|
68 |
+
|
69 |
+
# Convert the image to base64
|
70 |
+
|
71 |
+
# Construct the message
|
72 |
+
# message = HumanMessage(
|
73 |
+
# content=[
|
74 |
+
# {"type": "text",
|
75 |
+
# "text": prompt},
|
76 |
+
# {"type": "image", "image": image_base64},
|
77 |
+
# # {"type": "image", "image": f"data:image/png;base64,{image_base64}"},
|
78 |
+
# ]
|
79 |
+
# )
|
80 |
+
|
81 |
+
# Invoke the model
|
82 |
+
# direct_output = self.llm.invoke([message])
|
83 |
+
response = self.llm.generate_content(
|
84 |
+
[prompt, image]
|
85 |
+
)
|
86 |
+
direct_output = response.text[1:]
|
87 |
+
print(direct_output)
|
88 |
+
|
89 |
+
# Parse the output to JSON format using the specified schema.
|
90 |
+
try:
|
91 |
+
json_output = self.parser.parse(direct_output)
|
92 |
+
except:
|
93 |
+
json_output = direct_output
|
94 |
+
|
95 |
+
try:
|
96 |
+
str_output = self.combine_json_values(json_output)
|
97 |
+
except:
|
98 |
+
str_output = direct_output
|
99 |
+
|
100 |
+
return image, json_output, direct_output, str_output, None
|
101 |
+
|
102 |
+
|
103 |
+
PROMPT_OCR = """I need you to transcribe all of the text in this image.
|
104 |
+
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
|
105 |
+
PROMPT_ALL = """1. Refactor the unstructured OCR text into a dictionary based on the JSON structure outlined below.
|
106 |
+
2. Map the unstructured OCR text to the appropriate JSON key and populate the field given the user-defined rules.
|
107 |
+
3. JSON key values are permitted to remain empty strings if the corresponding information is not found in the unstructured OCR text.
|
108 |
+
4. Duplicate dictionary fields are not allowed.
|
109 |
+
5. Ensure all JSON keys are in camel case.
|
110 |
+
6. Ensure new JSON field values follow sentence case capitalization.
|
111 |
+
7. Ensure all key-value pairs in the JSON dictionary strictly adhere to the format and data types specified in the template.
|
112 |
+
8. Ensure output JSON string is valid JSON format. It should not have trailing commas or unquoted keys.
|
113 |
+
9. Only return a JSON dictionary represented as a string. You should not explain your answer.
|
114 |
+
This section provides rules for formatting each JSON value organized by the JSON key.
|
115 |
+
{catalogNumber Barcode identifier, typically a number with at least 6 digits, but fewer than 30 digits., order The full scientific name of the order in which the taxon is classified. Order must be capitalized., family The full scientific name of the family in which the taxon is classified. Family must be capitalized., scientificName The scientific name of the taxon including genus, specific epithet, and any lower classifications., scientificNameAuthorship The authorship information for the scientificName formatted according to the conventions of the applicable Darwin Core nomenclaturalCode., genus Taxonomic determination to genus. Genus must be capitalized. If genus is not present use the taxonomic family name followed by the word 'indet'., subgenus The full scientific name of the subgenus in which the taxon is classified. Values should include the genus to avoid homonym confusion., specificEpithet The name of the first or species epithet of the scientificName. Only include the species epithet., infraspecificEpithet The name of the lowest or terminal infraspecific epithet of the scientificName, excluding any rank designation., identifiedBy A comma separated list of names of people, groups, or organizations who assigned the taxon to the subject organism. This is not the specimen collector., recordedBy A comma separated list of names of people, groups, or organizations responsible for observing, recording, collecting, or presenting the original specimen. The primary collector or observer should be listed first., recordNumber An identifier given to the occurrence at the time it was recorded. Often serves as a link between field notes and an occurrence record, such as a specimen collector's number., verbatimEventDate The verbatim original representation of the date and time information for when the specimen was collected. Date of collection exactly as it appears on the label. Do not change the format or correct typos., eventDate Date the specimen was collected formatted as year-month-day, YYYY-MM_DD. If specific components of the date are unknown, they should be replaced with zeros. Examples \0000-00-00\ if the entire date is unknown, \YYYY-00-00\ if only the year is known, and \YYYY-MM-00\ if year and month are known but day is not., habitat A category or description of the habitat in which the specimen collection event occurred., occurrenceRemarks Text describing the specimen's geographic location. Text describing the appearance of the specimen. A statement about the presence or absence of a taxon at a the collection location. Text describing the significance of the specimen, such as a specific expedition or notable collection. Description of plant features such as leaf shape, size, color, stem texture, height, flower structure, scent, fruit or seed characteristics, root system type, overall growth habit and form, any notable aroma or secretions, presence of hairs or bristles, and any other distinguishing morphological or physiological characteristics., country The name of the country or major administrative unit in which the specimen was originally collected., stateProvince The name of the next smaller administrative region than country (state, province, canton, department, region, etc.) in which the specimen was originally collected., county The full, unabbreviated name of the next smaller administrative region than stateProvince (county, shire, department, parish etc.) in which the specimen was originally collected., municipality The full, unabbreviated name of the next smaller administrative region than county (city, municipality, etc.) in which the specimen was originally collected., locality Description of geographic location, landscape, landmarks, regional features, nearby places, or any contextual information aiding in pinpointing the exact origin or location of the specimen., degreeOfEstablishment Cultivated plants are intentionally grown by humans. In text descriptions, look for planting dates, garden locations, ornamental, cultivar names, garden, or farm to indicate cultivated plant. Use either - unknown or cultivated., decimalLatitude Latitude decimal coordinate. Correct and convert the verbatim location coordinates to conform with the decimal degrees GPS coordinate format., decimalLongitude Longitude decimal coordinate. Correct and convert the verbatim location coordinates to conform with the decimal degrees GPS coordinate format., verbatimCoordinates Verbatim location coordinates as they appear on the label. Do not convert formats. Possible coordinate types include [Lat, Long, UTM, TRS]., minimumElevationInMeters Minimum elevation or altitude in meters. Only if units are explicit then convert from feet (\ft\ or \ft.\\ or \feet\) to meters (\m\ or \m.\ or \meters\). Round to integer., maximumElevationInMeters Maximum elevation or altitude in meters. If only one elevation is present, then max_elevation should be set to the null_value. Only if units are explicit then convert from feet (\ft\ or \ft.\ or \feet\) to meters (\m\ or \m.\ or \meters\). Round to integer.}
|
116 |
+
Please populate the following JSON dictionary based on the rules and the unformatted OCR text
|
117 |
+
{
|
118 |
+
catalogNumber ,
|
119 |
+
order ,
|
120 |
+
family ,
|
121 |
+
scientificName ,
|
122 |
+
scientificNameAuthorship ,
|
123 |
+
genus ,
|
124 |
+
subgenus ,
|
125 |
+
specificEpithet ,
|
126 |
+
infraspecificEpithet ,
|
127 |
+
identifiedBy ,
|
128 |
+
recordedBy ,
|
129 |
+
recordNumber ,
|
130 |
+
verbatimEventDate ,
|
131 |
+
eventDate ,
|
132 |
+
habitat ,
|
133 |
+
occurrenceRemarks ,
|
134 |
+
country ,
|
135 |
+
stateProvince ,
|
136 |
+
county ,
|
137 |
+
municipality ,
|
138 |
+
locality ,
|
139 |
+
degreeOfEstablishment ,
|
140 |
+
decimalLatitude ,
|
141 |
+
decimalLongitude ,
|
142 |
+
verbatimCoordinates ,
|
143 |
+
minimumElevationInMeters ,
|
144 |
+
maximumElevationInMeters
|
145 |
+
}
|
146 |
+
"""
|
147 |
+
def _get_google_credentials():
|
148 |
+
with open('D:/Dropbox/Servers/google_API/vouchervision-hf-a2c361d5d29d.json', 'r') as file:
|
149 |
+
data = json.load(file)
|
150 |
+
creds_json_str = json.dumps(data)
|
151 |
+
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
|
152 |
+
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = creds_json_str
|
153 |
+
os.environ['GOOGLE_API_KEY'] = 'AIzaSyAHOH1w1qV7C3jS4W7QFyoaTGUwZIgS5ig'
|
154 |
+
return credentials
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
vertexai.init(project='vouchervision-hf', location='us-central1', credentials=_get_google_credentials())
|
158 |
+
|
159 |
+
logger = logging.getLogger('LLaVA')
|
160 |
+
logger.setLevel(logging.DEBUG)
|
161 |
+
|
162 |
+
OCR_Gemini = OCRGeminiProVision(logger)
|
163 |
+
image, json_output, direct_output, str_output, usage_report = OCR_Gemini.transcribe_image(
|
164 |
+
# "C:/Users/Will/Downloads/gallery_short_gpt4t_trOCRhand/Cropped_Images/By_Class/label/MICH_7574789_Cyperaceae_Carex_scoparia.jpg",
|
165 |
+
# "D:/D_Desktop/usda_out/usda/Original_Images/4.jpg",
|
166 |
+
"D:/Dropbox/VoucherVision/demo/demo_images/MICH_16205594_Poaceae_Jouvea_pilosa.jpg",
|
167 |
+
PROMPT_OCR)
|
168 |
+
print('json_output')
|
169 |
+
print(json_output)
|
170 |
+
print('direct_output')
|
171 |
+
print(direct_output)
|
172 |
+
print('str_output')
|
173 |
+
print(str_output)
|
174 |
+
print('usage_report')
|
175 |
+
print(usage_report)
|
vouchervision/OCR_google_cloud_vision.py
CHANGED
@@ -89,6 +89,10 @@ class OCREngine:
|
|
89 |
self.trOCR_characters = None
|
90 |
self.set_client()
|
91 |
self.init_craft()
|
|
|
|
|
|
|
|
|
92 |
if 'LLaVA' in self.OCR_option:
|
93 |
self.init_llava()
|
94 |
|
@@ -123,9 +127,6 @@ class OCREngine:
|
|
123 |
|
124 |
def init_llava(self):
|
125 |
|
126 |
-
self.llava_prompt = """I need you to transcribe all of the text in this image.
|
127 |
-
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
|
128 |
-
|
129 |
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
|
130 |
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
|
131 |
|
@@ -140,6 +141,9 @@ class OCREngine:
|
|
140 |
use_4bit = True
|
141 |
|
142 |
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
|
|
|
|
|
|
|
143 |
|
144 |
|
145 |
def detect_text_craft(self):
|
@@ -684,7 +688,7 @@ class OCREngine:
|
|
684 |
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
|
685 |
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
|
686 |
|
687 |
-
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.
|
688 |
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
|
689 |
|
690 |
try:
|
|
|
89 |
self.trOCR_characters = None
|
90 |
self.set_client()
|
91 |
self.init_craft()
|
92 |
+
|
93 |
+
self.multimodal_prompt = """I need you to transcribe all of the text in this image.
|
94 |
+
Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
|
95 |
+
|
96 |
if 'LLaVA' in self.OCR_option:
|
97 |
self.init_llava()
|
98 |
|
|
|
127 |
|
128 |
def init_llava(self):
|
129 |
|
|
|
|
|
|
|
130 |
self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
|
131 |
self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
|
132 |
|
|
|
141 |
use_4bit = True
|
142 |
|
143 |
self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
|
144 |
+
|
145 |
+
def init_gemini_vision(self):
|
146 |
+
pass
|
147 |
|
148 |
|
149 |
def detect_text_craft(self):
|
|
|
688 |
if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
|
689 |
self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
|
690 |
|
691 |
+
image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
|
692 |
self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
|
693 |
|
694 |
try:
|
vouchervision/OCR_llava.py
CHANGED
@@ -94,7 +94,8 @@ LLaVA Models:
|
|
94 |
|
95 |
# Define the desired data structure for the transcription.
|
96 |
class Transcription(BaseModel):
|
97 |
-
|
|
|
98 |
|
99 |
class OCRllava:
|
100 |
def __init__(self, logger, model_path="liuhaotian/llava-v1.6-34b",load_in_4bit=False, load_in_8bit=False):
|
@@ -139,7 +140,7 @@ class OCRllava:
|
|
139 |
# self.vision_tower.load_model()
|
140 |
# self.vision_tower.to(device='cuda')
|
141 |
# self.image_processor = self.vision_tower.image_processor
|
142 |
-
self.parser = JsonOutputParser(pydantic_object=Transcription)
|
143 |
|
144 |
def image_parser(self):
|
145 |
sep = ","
|
|
|
94 |
|
95 |
# Define the desired data structure for the transcription.
|
96 |
class Transcription(BaseModel):
|
97 |
+
Transcription_Printed_Text: str = Field(description="The transcription of all printed text in the image.")
|
98 |
+
Transcription_Handwritten_Text: str = Field(description="The transcription of all handwritten text in the image.")
|
99 |
|
100 |
class OCRllava:
|
101 |
def __init__(self, logger, model_path="liuhaotian/llava-v1.6-34b",load_in_4bit=False, load_in_8bit=False):
|
|
|
140 |
# self.vision_tower.load_model()
|
141 |
# self.vision_tower.to(device='cuda')
|
142 |
# self.image_processor = self.vision_tower.image_processor
|
143 |
+
self.parser = JsonOutputParser(pydantic_object=Transcription)
|
144 |
|
145 |
def image_parser(self):
|
146 |
sep = ","
|
vouchervision/model_maps.py
CHANGED
@@ -4,7 +4,8 @@ class ModelMaps:
|
|
4 |
'GPT_4': '#32CD32', # Lime Green
|
5 |
'GPT_3_5': '#008000', # Green
|
6 |
'GPT_3_5_INSTRUCT': '#3CB371', # Medium Sea Green
|
7 |
-
'
|
|
|
8 |
'GPT_4_32K': '#006400', # Dark Green
|
9 |
|
10 |
'PALM2_TB_1': '#87CEEB', # Sky Blue
|
@@ -13,7 +14,8 @@ class ModelMaps:
|
|
13 |
'GEMINI_PRO': '#1E00FF', #
|
14 |
|
15 |
'AZURE_GPT_4': '#800080', # Purple
|
16 |
-
'
|
|
|
17 |
'AZURE_GPT_4_32K': '#8A2BE2', # Blue Violet
|
18 |
'AZURE_GPT_3_5_INSTRUCT': '#9400D3', # Dark Violet
|
19 |
'AZURE_GPT_3_5': '#9932CC', # Dark Orchid
|
@@ -30,12 +32,14 @@ class ModelMaps:
|
|
30 |
|
31 |
MODELS_OPENAI = ["GPT 4",
|
32 |
"GPT 4 32k",
|
|
|
33 |
"GPT 4 Turbo 1106-preview",
|
34 |
"GPT 3.5",
|
35 |
"GPT 3.5 Instruct",
|
36 |
|
37 |
"Azure GPT 4",
|
38 |
"Azure GPT 4 32k",
|
|
|
39 |
"Azure GPT 4 Turbo 1106-preview",
|
40 |
"Azure GPT 3.5",
|
41 |
"Azure GPT 3.5 Instruct",]
|
@@ -58,13 +62,15 @@ class ModelMaps:
|
|
58 |
version_mapping_cost = {
|
59 |
'GPT 4 32k': 'GPT_4_32K',
|
60 |
'GPT 4': 'GPT_4',
|
61 |
-
'GPT 4 Turbo
|
|
|
62 |
'GPT 3.5 Instruct': 'GPT_3_5_INSTRUCT',
|
63 |
'GPT 3.5': 'GPT_3_5',
|
64 |
|
65 |
'Azure GPT 4 32k': 'AZURE_GPT_4_32K',
|
66 |
'Azure GPT 4': 'AZURE_GPT_4',
|
67 |
-
'Azure GPT 4 Turbo
|
|
|
68 |
'Azure GPT 3.5 Instruct': 'AZURE_GPT_3_5_INSTRUCT',
|
69 |
'Azure GPT 3.5': 'AZURE_GPT_3_5',
|
70 |
|
@@ -88,6 +94,7 @@ class ModelMaps:
|
|
88 |
# Define the mapping for 'has_key' values
|
89 |
version_has_key = {
|
90 |
'GPT 4 Turbo 1106-preview': has_key_openai,
|
|
|
91 |
'GPT 4': has_key_openai,
|
92 |
'GPT 4 32k': has_key_openai,
|
93 |
'GPT 3.5': has_key_openai,
|
@@ -97,6 +104,7 @@ class ModelMaps:
|
|
97 |
'Azure GPT 3.5 Instruct': has_key_azure_openai,
|
98 |
'Azure GPT 4': has_key_azure_openai,
|
99 |
'Azure GPT 4 Turbo 1106-preview': has_key_azure_openai,
|
|
|
100 |
'Azure GPT 4 32k': has_key_azure_openai,
|
101 |
|
102 |
'PaLM 2 text-bison@001': has_key_google_application_credentials,
|
@@ -162,9 +170,12 @@ class ModelMaps:
|
|
162 |
elif key == 'GPT_4_32K':
|
163 |
return 'gpt-4-32k'
|
164 |
|
165 |
-
elif key == '
|
166 |
return 'gpt-4-1106-preview'
|
167 |
|
|
|
|
|
|
|
168 |
### Azure
|
169 |
elif key == 'AZURE_GPT_3_5':
|
170 |
return 'gpt-35-turbo-1106'
|
@@ -175,9 +186,12 @@ class ModelMaps:
|
|
175 |
elif key == 'AZURE_GPT_4':
|
176 |
return "gpt-4"
|
177 |
|
178 |
-
elif key == '
|
179 |
return "gpt-4-1106-preview"
|
180 |
|
|
|
|
|
|
|
181 |
elif key == 'AZURE_GPT_4_32K':
|
182 |
return "gpt-4-32k"
|
183 |
|
|
|
4 |
'GPT_4': '#32CD32', # Lime Green
|
5 |
'GPT_3_5': '#008000', # Green
|
6 |
'GPT_3_5_INSTRUCT': '#3CB371', # Medium Sea Green
|
7 |
+
'GPT_4_TURBO_1106': '#228B22', # Forest Green
|
8 |
+
'GPT_4_TURBO_0125': '#228B22', # Forest Green
|
9 |
'GPT_4_32K': '#006400', # Dark Green
|
10 |
|
11 |
'PALM2_TB_1': '#87CEEB', # Sky Blue
|
|
|
14 |
'GEMINI_PRO': '#1E00FF', #
|
15 |
|
16 |
'AZURE_GPT_4': '#800080', # Purple
|
17 |
+
'AZURE_GPT_4_TURBO_1106': '#9370DB', # Medium Purple
|
18 |
+
'AZURE_GPT_4_TURBO_0125': '#9370DB', # Medium Purple
|
19 |
'AZURE_GPT_4_32K': '#8A2BE2', # Blue Violet
|
20 |
'AZURE_GPT_3_5_INSTRUCT': '#9400D3', # Dark Violet
|
21 |
'AZURE_GPT_3_5': '#9932CC', # Dark Orchid
|
|
|
32 |
|
33 |
MODELS_OPENAI = ["GPT 4",
|
34 |
"GPT 4 32k",
|
35 |
+
"GPT 4 Turbo 0125-preview",
|
36 |
"GPT 4 Turbo 1106-preview",
|
37 |
"GPT 3.5",
|
38 |
"GPT 3.5 Instruct",
|
39 |
|
40 |
"Azure GPT 4",
|
41 |
"Azure GPT 4 32k",
|
42 |
+
"Azure GPT 4 Turbo 0125-preview",
|
43 |
"Azure GPT 4 Turbo 1106-preview",
|
44 |
"Azure GPT 3.5",
|
45 |
"Azure GPT 3.5 Instruct",]
|
|
|
62 |
version_mapping_cost = {
|
63 |
'GPT 4 32k': 'GPT_4_32K',
|
64 |
'GPT 4': 'GPT_4',
|
65 |
+
'GPT 4 Turbo 0125-preview': 'GPT_4_TURBO_0125',
|
66 |
+
'GPT 4 Turbo 1106-preview': 'GPT_4_TURBO_1106',
|
67 |
'GPT 3.5 Instruct': 'GPT_3_5_INSTRUCT',
|
68 |
'GPT 3.5': 'GPT_3_5',
|
69 |
|
70 |
'Azure GPT 4 32k': 'AZURE_GPT_4_32K',
|
71 |
'Azure GPT 4': 'AZURE_GPT_4',
|
72 |
+
'Azure GPT 4 Turbo 0125-preview': 'AZURE_GPT_4_TURBO_0125',
|
73 |
+
'Azure GPT 4 Turbo 1106-preview': 'AZURE_GPT_4_TURBO_1106',
|
74 |
'Azure GPT 3.5 Instruct': 'AZURE_GPT_3_5_INSTRUCT',
|
75 |
'Azure GPT 3.5': 'AZURE_GPT_3_5',
|
76 |
|
|
|
94 |
# Define the mapping for 'has_key' values
|
95 |
version_has_key = {
|
96 |
'GPT 4 Turbo 1106-preview': has_key_openai,
|
97 |
+
'GPT 4 Turbo 0125-preview': has_key_openai,
|
98 |
'GPT 4': has_key_openai,
|
99 |
'GPT 4 32k': has_key_openai,
|
100 |
'GPT 3.5': has_key_openai,
|
|
|
104 |
'Azure GPT 3.5 Instruct': has_key_azure_openai,
|
105 |
'Azure GPT 4': has_key_azure_openai,
|
106 |
'Azure GPT 4 Turbo 1106-preview': has_key_azure_openai,
|
107 |
+
'Azure GPT 4 Turbo 0125-preview': has_key_azure_openai,
|
108 |
'Azure GPT 4 32k': has_key_azure_openai,
|
109 |
|
110 |
'PaLM 2 text-bison@001': has_key_google_application_credentials,
|
|
|
170 |
elif key == 'GPT_4_32K':
|
171 |
return 'gpt-4-32k'
|
172 |
|
173 |
+
elif key == 'GPT_4_TURBO_1106':
|
174 |
return 'gpt-4-1106-preview'
|
175 |
|
176 |
+
elif key == 'GPT_4_TURBO_0125':
|
177 |
+
return 'gpt-4-0125-preview'
|
178 |
+
|
179 |
### Azure
|
180 |
elif key == 'AZURE_GPT_3_5':
|
181 |
return 'gpt-35-turbo-1106'
|
|
|
186 |
elif key == 'AZURE_GPT_4':
|
187 |
return "gpt-4"
|
188 |
|
189 |
+
elif key == 'AZURE_GPT_4_TURBO_1106':
|
190 |
return "gpt-4-1106-preview"
|
191 |
|
192 |
+
elif key == 'AZURE_GPT_4_TURBO_0125':
|
193 |
+
return 'gpt-4-0125-preview'
|
194 |
+
|
195 |
elif key == 'AZURE_GPT_4_32K':
|
196 |
return "gpt-4-32k"
|
197 |
|
vouchervision/utils_hf.py
CHANGED
@@ -6,6 +6,7 @@ import base64
|
|
6 |
from PIL import Image
|
7 |
from PIL import Image
|
8 |
from io import BytesIO
|
|
|
9 |
|
10 |
# from vouchervision.general_utils import get_cfg_from_full_path
|
11 |
|
@@ -40,29 +41,46 @@ def setup_streamlit_config(dir_home):
|
|
40 |
def save_uploaded_file(directory, img_file, image=None):
|
41 |
if not os.path.exists(directory):
|
42 |
os.makedirs(directory)
|
|
|
|
|
|
|
43 |
# Assuming the uploaded file is an image
|
44 |
-
if
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
full_path = os.path.join(directory, img_file.name)
|
48 |
image.save(full_path, "JPEG")
|
49 |
-
|
50 |
-
|
51 |
-
except:
|
52 |
-
with Image.open(os.path.join(directory,img_file)) as image:
|
53 |
full_path = os.path.join(directory, img_file)
|
54 |
image.save(full_path, "JPEG")
|
55 |
-
|
56 |
-
return full_path
|
57 |
-
else:
|
58 |
-
try:
|
59 |
-
full_path = os.path.join(directory, img_file.name)
|
60 |
-
image.save(full_path, "JPEG")
|
61 |
-
return full_path
|
62 |
-
except:
|
63 |
-
full_path = os.path.join(directory, img_file)
|
64 |
-
image.save(full_path, "JPEG")
|
65 |
-
return full_path
|
66 |
|
67 |
def save_uploaded_local(directory, img_file, image=None):
|
68 |
name = img_file.split(os.path.sep)[-1]
|
|
|
6 |
from PIL import Image
|
7 |
from PIL import Image
|
8 |
from io import BytesIO
|
9 |
+
from shutil import copyfileobj
|
10 |
|
11 |
# from vouchervision.general_utils import get_cfg_from_full_path
|
12 |
|
|
|
41 |
def save_uploaded_file(directory, img_file, image=None):
|
42 |
if not os.path.exists(directory):
|
43 |
os.makedirs(directory)
|
44 |
+
|
45 |
+
full_path = os.path.join(directory, img_file.name)
|
46 |
+
|
47 |
# Assuming the uploaded file is an image
|
48 |
+
if img_file.name.lower().endswith('.pdf'):
|
49 |
+
with open(full_path, 'wb') as out_file:
|
50 |
+
# If img_file is a file-like object (e.g., Django's UploadedFile),
|
51 |
+
# you can use copyfileobj or read chunks.
|
52 |
+
# If it's a path, you'd need to open and then save it.
|
53 |
+
if hasattr(img_file, 'read'):
|
54 |
+
# This is a file-like object
|
55 |
+
copyfileobj(img_file, out_file)
|
56 |
+
else:
|
57 |
+
# If img_file is a path string
|
58 |
+
with open(img_file, 'rb') as fd:
|
59 |
+
copyfileobj(fd, out_file)
|
60 |
+
return full_path
|
61 |
+
else:
|
62 |
+
if image is None:
|
63 |
+
try:
|
64 |
+
with Image.open(img_file) as image:
|
65 |
+
full_path = os.path.join(directory, img_file.name)
|
66 |
+
image.save(full_path, "JPEG")
|
67 |
+
# Return the full path of the saved image
|
68 |
+
return full_path
|
69 |
+
except:
|
70 |
+
with Image.open(os.path.join(directory,img_file)) as image:
|
71 |
+
full_path = os.path.join(directory, img_file)
|
72 |
+
image.save(full_path, "JPEG")
|
73 |
+
# Return the full path of the saved image
|
74 |
+
return full_path
|
75 |
+
else:
|
76 |
+
try:
|
77 |
full_path = os.path.join(directory, img_file.name)
|
78 |
image.save(full_path, "JPEG")
|
79 |
+
return full_path
|
80 |
+
except:
|
|
|
|
|
81 |
full_path = os.path.join(directory, img_file)
|
82 |
image.save(full_path, "JPEG")
|
83 |
+
return full_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def save_uploaded_local(directory, img_file, image=None):
|
86 |
name = img_file.split(os.path.sep)[-1]
|