phyloforfun commited on
Commit
5093ce6
·
1 Parent(s): 70768ef
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
 
vouchervision/OCR_google_cloud_vision (DESKTOP-548UDCR's conflicted copy 2024-06-15).py DELETED
@@ -1,850 +0,0 @@
1
- import os, io, sys, inspect, statistics, json, cv2
2
- from statistics import mean
3
- # from google.cloud import vision, storage
4
- from google.cloud import vision
5
- from google.cloud import vision_v1p3beta1 as vision_beta
6
- from PIL import Image, ImageDraw, ImageFont
7
- import colorsys
8
- from tqdm import tqdm
9
- from google.oauth2 import service_account
10
-
11
- ### LLaVA should only be installed if the user will actually use it.
12
- ### It requires the most recent pytorch/Python and can mess with older systems
13
-
14
-
15
- '''
16
- @misc{li2021trocr,
17
- title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
18
- author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
19
- year={2021},
20
- eprint={2109.10282},
21
- archivePrefix={arXiv},
22
- primaryClass={cs.CL}
23
- }
24
- @inproceedings{baek2019character,
25
- title={Character Region Awareness for Text Detection},
26
- author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
27
- booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
28
- pages={9365--9374},
29
- year={2019}
30
- }
31
- '''
32
-
33
- class OCREngine:
34
-
35
- BBOX_COLOR = "black"
36
-
37
- def __init__(self, logger, json_report, dir_home, is_hf, path, cfg, trOCR_model_version, trOCR_model, trOCR_processor, device):
38
- self.is_hf = is_hf
39
- self.logger = logger
40
-
41
- self.json_report = json_report
42
-
43
- self.path = path
44
- self.cfg = cfg
45
- self.do_use_trOCR = self.cfg['leafmachine']['project']['do_use_trOCR']
46
- self.OCR_option = self.cfg['leafmachine']['project']['OCR_option']
47
- self.double_OCR = self.cfg['leafmachine']['project']['double_OCR']
48
- self.dir_home = dir_home
49
-
50
- # Initialize TrOCR components
51
- self.trOCR_model_version = trOCR_model_version
52
- self.trOCR_processor = trOCR_processor
53
- self.trOCR_model = trOCR_model
54
- self.device = device
55
-
56
- self.hand_cleaned_text = None
57
- self.hand_organized_text = None
58
- self.hand_bounds = None
59
- self.hand_bounds_word = None
60
- self.hand_bounds_flat = None
61
- self.hand_text_to_box_mapping = None
62
- self.hand_height = None
63
- self.hand_confidences = None
64
- self.hand_characters = None
65
-
66
- self.normal_cleaned_text = None
67
- self.normal_organized_text = None
68
- self.normal_bounds = None
69
- self.normal_bounds_word = None
70
- self.normal_text_to_box_mapping = None
71
- self.normal_bounds_flat = None
72
- self.normal_height = None
73
- self.normal_confidences = None
74
- self.normal_characters = None
75
-
76
- self.trOCR_texts = None
77
- self.trOCR_text_to_box_mapping = None
78
- self.trOCR_bounds_flat = None
79
- self.trOCR_height = None
80
- self.trOCR_confidences = None
81
- self.trOCR_characters = None
82
- self.set_client()
83
- self.init_craft()
84
-
85
- self.multimodal_prompt = """I need you to transcribe all of the text in this image.
86
- Place the transcribed text into a JSON dictionary with this form {"Transcription_Printed_Text": "text","Transcription_Handwritten_Text": "text"}"""
87
- self.init_llava()
88
-
89
-
90
- def set_client(self):
91
- if self.is_hf:
92
- self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
93
- self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
94
- else:
95
- self.client_beta = vision_beta.ImageAnnotatorClient(credentials=self.get_google_credentials())
96
- self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
97
-
98
-
99
- def get_google_credentials(self):
100
- creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
101
- credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
102
- return credentials
103
-
104
- def init_craft(self):
105
- if 'CRAFT' in self.OCR_option:
106
- from craft_text_detector import load_craftnet_model, load_refinenet_model
107
-
108
- try:
109
- self.refine_net = load_refinenet_model(cuda=True)
110
- self.use_cuda = True
111
- except:
112
- self.refine_net = load_refinenet_model(cuda=False)
113
- self.use_cuda = False
114
-
115
- if self.use_cuda:
116
- self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=True)
117
- else:
118
- self.craft_net = load_craftnet_model(weight_path=os.path.join(self.dir_home,'vouchervision','craft','craft_mlt_25k.pth'), cuda=False)
119
-
120
- def init_llava(self):
121
- if 'LLaVA' in self.OCR_option:
122
- from vouchervision.OCR_llava import OCRllava
123
-
124
- self.model_path = "liuhaotian/" + self.cfg['leafmachine']['project']['OCR_option_llava']
125
- self.model_quant = self.cfg['leafmachine']['project']['OCR_option_llava_bit']
126
-
127
- if self.json_report:
128
- self.json_report.set_text(text_main=f'Loading LLaVA model: {self.model_path} Quantization: {self.model_quant}')
129
-
130
- if self.model_quant == '4bit':
131
- use_4bit = True
132
- elif self.model_quant == 'full':
133
- use_4bit = False
134
- else:
135
- self.logger.info(f"Provided model quantization invlid. Using 4bit.")
136
- use_4bit = True
137
-
138
- self.Llava = OCRllava(self.logger, model_path=self.model_path, load_in_4bit=use_4bit, load_in_8bit=False)
139
-
140
- def init_gemini_vision(self):
141
- pass
142
-
143
- def init_gpt4_vision(self):
144
- pass
145
-
146
-
147
- def detect_text_craft(self):
148
- from craft_text_detector import read_image, get_prediction
149
-
150
- # Perform prediction using CRAFT
151
- image = read_image(self.path)
152
-
153
- link_threshold = 0.85
154
- text_threshold = 0.4
155
- low_text = 0.4
156
-
157
- if self.use_cuda:
158
- self.prediction_result = get_prediction(
159
- image=image,
160
- craft_net=self.craft_net,
161
- refine_net=self.refine_net,
162
- text_threshold=text_threshold,
163
- link_threshold=link_threshold,
164
- low_text=low_text,
165
- cuda=True,
166
- long_size=1280
167
- )
168
- else:
169
- self.prediction_result = get_prediction(
170
- image=image,
171
- craft_net=self.craft_net,
172
- refine_net=self.refine_net,
173
- text_threshold=text_threshold,
174
- link_threshold=link_threshold,
175
- low_text=low_text,
176
- cuda=False,
177
- long_size=1280
178
- )
179
-
180
- # Initialize metadata structures
181
- bounds = []
182
- bounds_word = [] # CRAFT gives bounds for text regions, not individual words
183
- text_to_box_mapping = []
184
- bounds_flat = []
185
- height_flat = []
186
- confidences = [] # CRAFT does not provide confidences per character, so this might be uniformly set or estimated
187
- characters = [] # Simulating as CRAFT doesn't provide character-level details
188
- organized_text = ""
189
-
190
- total_b = len(self.prediction_result["boxes"])
191
- i=0
192
- # Process each detected text region
193
- for box in self.prediction_result["boxes"]:
194
- i+=1
195
- if self.json_report:
196
- self.json_report.set_text(text_main=f'Locating text using CRAFT --- {i}/{total_b}')
197
-
198
- vertices = [{"x": int(vertex[0]), "y": int(vertex[1])} for vertex in box]
199
-
200
- # Simulate a mapping for the whole detected region as a word
201
- text_to_box_mapping.append({
202
- "vertices": vertices,
203
- "text": "detected_text" # Placeholder, as CRAFT does not provide the text content directly
204
- })
205
-
206
- # Assuming each box is a word for the sake of this example
207
- bounds_word.append({"vertices": vertices})
208
-
209
- # For simplicity, we're not dividing text regions into characters as CRAFT doesn't provide this
210
- # Instead, we create a single large 'character' per detected region
211
- bounds.append({"vertices": vertices})
212
-
213
- # Simulate flat bounds and height for each detected region
214
- x_positions = [vertex["x"] for vertex in vertices]
215
- y_positions = [vertex["y"] for vertex in vertices]
216
- min_x, max_x = min(x_positions), max(x_positions)
217
- min_y, max_y = min(y_positions), max(y_positions)
218
- avg_height = max_y - min_y
219
- height_flat.append(avg_height)
220
-
221
- # Assuming uniform confidence for all detected regions
222
- confidences.append(1.0) # Placeholder confidence
223
-
224
- # Adding dummy character for each box
225
- characters.append("X") # Placeholder character
226
-
227
- # Organize text as a single string (assuming each box is a word)
228
- # organized_text += "detected_text " # Placeholder text
229
-
230
- # Update class attributes with processed data
231
- self.normal_bounds = bounds
232
- self.normal_bounds_word = bounds_word
233
- self.normal_text_to_box_mapping = text_to_box_mapping
234
- self.normal_bounds_flat = bounds_flat # This would be similar to bounds if not processing characters individually
235
- self.normal_height = height_flat
236
- self.normal_confidences = confidences
237
- self.normal_characters = characters
238
- self.normal_organized_text = organized_text.strip()
239
-
240
-
241
- def detect_text_with_trOCR_using_google_bboxes(self, do_use_trOCR, logger):
242
- CONFIDENCES = 0.80
243
- MAX_NEW_TOKENS = 50
244
-
245
- self.OCR_JSON_to_file = {}
246
-
247
- ocr_parts = ''
248
- if not do_use_trOCR:
249
- if 'normal' in self.OCR_option:
250
- self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
251
- # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}")
252
- # ocr_parts = ocr_parts + f"Google_OCR_Standard:\n{self.normal_organized_text}"
253
- ocr_parts = self.normal_organized_text
254
-
255
- if 'hand' in self.OCR_option:
256
- self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
257
- # logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}")
258
- # ocr_parts = ocr_parts + f"Google_OCR_Handwriting:\n{self.hand_organized_text}"
259
- ocr_parts = self.hand_organized_text
260
-
261
- # if self.OCR_option in ['both',]:
262
- # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}")
263
- # return f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}"
264
- return ocr_parts
265
- else:
266
- logger.info(f'Supplementing with trOCR')
267
-
268
- self.trOCR_texts = []
269
- original_image = Image.open(self.path).convert("RGB")
270
-
271
- if 'normal' in self.OCR_option or 'CRAFT' in self.OCR_option:
272
- available_bounds = self.normal_bounds_word
273
- elif 'hand' in self.OCR_option:
274
- available_bounds = self.hand_bounds_word
275
- # elif self.OCR_option in ['both',]:
276
- # available_bounds = self.hand_bounds_word
277
- else:
278
- raise
279
-
280
- text_to_box_mapping = []
281
- characters = []
282
- height = []
283
- confidences = []
284
- total_b = len(available_bounds)
285
- i=0
286
- for bound in tqdm(available_bounds, desc="Processing words using Google Vision bboxes"):
287
- i+=1
288
- if self.json_report:
289
- self.json_report.set_text(text_main=f'Working on trOCR :construction: {i}/{total_b}')
290
-
291
- vertices = bound["vertices"]
292
-
293
- left = min([v["x"] for v in vertices])
294
- top = min([v["y"] for v in vertices])
295
- right = max([v["x"] for v in vertices])
296
- bottom = max([v["y"] for v in vertices])
297
-
298
- # Crop image based on Google's bounding box
299
- cropped_image = original_image.crop((left, top, right, bottom))
300
- pixel_values = self.trOCR_processor(cropped_image, return_tensors="pt").pixel_values
301
-
302
- # Move pixel values to the appropriate device
303
- pixel_values = pixel_values.to(self.device)
304
-
305
- generated_ids = self.trOCR_model.generate(pixel_values, max_new_tokens=MAX_NEW_TOKENS)
306
- extracted_text = self.trOCR_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
307
- self.trOCR_texts.append(extracted_text)
308
-
309
- # For plotting
310
- word_length = max(vertex.get('x') for vertex in vertices) - min(vertex.get('x') for vertex in vertices)
311
- num_symbols = len(extracted_text)
312
-
313
- Yw = max(vertex.get('y') for vertex in vertices)
314
- Yo = Yw - min(vertex.get('y') for vertex in vertices)
315
- X = word_length / num_symbols if num_symbols > 0 else 0
316
- H = int(X+(Yo*0.1))
317
- height.append(H)
318
-
319
- map_dict = {
320
- "vertices": vertices,
321
- "text": extracted_text # Use the text extracted by trOCR
322
- }
323
- text_to_box_mapping.append(map_dict)
324
-
325
- characters.append(extracted_text)
326
- confidences.append(CONFIDENCES)
327
-
328
- median_height = statistics.median(height) if height else 0
329
- median_heights = [median_height * 1.5] * len(characters)
330
-
331
- self.trOCR_texts = ' '.join(self.trOCR_texts)
332
-
333
- self.trOCR_text_to_box_mapping = text_to_box_mapping
334
- self.trOCR_bounds_flat = available_bounds
335
- self.trOCR_height = median_heights
336
- self.trOCR_confidences = confidences
337
- self.trOCR_characters = characters
338
-
339
- if 'normal' in self.OCR_option:
340
- self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
341
- self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
342
- # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
343
- # ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
344
- ocr_parts = self.trOCR_texts
345
- if 'hand' in self.OCR_option:
346
- self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
347
- self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
348
- # logger.info(f"Google_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
349
- # ocr_parts = ocr_parts + f"\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
350
- ocr_parts = self.trOCR_texts
351
- # if self.OCR_option in ['both',]:
352
- # self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
353
- # self.OCR_JSON_to_file['OCR_handwritten'] = self.hand_organized_text
354
- # self.OCR_JSON_to_file['OCR_trOCR'] = self.trOCR_texts
355
- # logger.info(f"Google_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}")
356
- # ocr_parts = ocr_parts + f"\nGoogle_OCR_Standard:\n{self.normal_organized_text}\n\nGoogle_OCR_Handwriting:\n{self.hand_organized_text}\n\ntrOCR:\n{self.trOCR_texts}"
357
- if 'CRAFT' in self.OCR_option:
358
- # self.OCR_JSON_to_file['OCR_printed'] = self.normal_organized_text
359
- self.OCR_JSON_to_file['OCR_CRAFT_trOCR'] = self.trOCR_texts
360
- # logger.info(f"CRAFT_trOCR:\n{self.trOCR_texts}")
361
- # ocr_parts = ocr_parts + f"\nCRAFT_trOCR:\n{self.trOCR_texts}"
362
- ocr_parts = self.trOCR_texts
363
- return ocr_parts
364
-
365
- @staticmethod
366
- def confidence_to_color(confidence):
367
- hue = (confidence - 0.5) * 120 / 0.5
368
- r, g, b = colorsys.hls_to_rgb(hue/360, 0.5, 1)
369
- return (int(r*255), int(g*255), int(b*255))
370
-
371
-
372
- def render_text_on_black_image(self, option):
373
- bounds_flat = getattr(self, f'{option}_bounds_flat', [])
374
- heights = getattr(self, f'{option}_height', [])
375
- confidences = getattr(self, f'{option}_confidences', [])
376
- characters = getattr(self, f'{option}_characters', [])
377
-
378
- original_image = Image.open(self.path)
379
- width, height = original_image.size
380
- black_image = Image.new("RGB", (width, height), "black")
381
- draw = ImageDraw.Draw(black_image)
382
-
383
- for bound, confidence, char_height, character in zip(bounds_flat, confidences, heights, characters):
384
- font_size = int(char_height)
385
- try:
386
- font = ImageFont.truetype("arial.ttf", font_size)
387
- except:
388
- font = ImageFont.load_default().font_variant(size=font_size)
389
- if option == 'trOCR':
390
- color = (0, 170, 255)
391
- else:
392
- color = OCREngine.confidence_to_color(confidence)
393
- position = (bound["vertices"][0]["x"], bound["vertices"][0]["y"] - char_height)
394
- draw.text(position, character, fill=color, font=font)
395
-
396
- return black_image
397
-
398
-
399
- def merge_images(self, image1, image2):
400
- width1, height1 = image1.size
401
- width2, height2 = image2.size
402
- merged_image = Image.new("RGB", (width1 + width2, max([height1, height2])))
403
- merged_image.paste(image1, (0, 0))
404
- merged_image.paste(image2, (width1, 0))
405
- return merged_image
406
-
407
-
408
- def draw_boxes(self, option):
409
- bounds = getattr(self, f'{option}_bounds', [])
410
- bounds_word = getattr(self, f'{option}_bounds_word', [])
411
- confidences = getattr(self, f'{option}_confidences', [])
412
-
413
- draw = ImageDraw.Draw(self.image)
414
- width, height = self.image.size
415
- if min([width, height]) > 4000:
416
- line_width_thick = int((width + height) / 2 * 0.0025) # Adjust line width for character level
417
- line_width_thin = 1
418
- else:
419
- line_width_thick = int((width + height) / 2 * 0.005) # Adjust line width for character level
420
- line_width_thin = 1 #int((width + height) / 2 * 0.001)
421
-
422
- for bound in bounds_word:
423
- draw.polygon(
424
- [
425
- bound["vertices"][0]["x"], bound["vertices"][0]["y"],
426
- bound["vertices"][1]["x"], bound["vertices"][1]["y"],
427
- bound["vertices"][2]["x"], bound["vertices"][2]["y"],
428
- bound["vertices"][3]["x"], bound["vertices"][3]["y"],
429
- ],
430
- outline=OCREngine.BBOX_COLOR,
431
- width=line_width_thin
432
- )
433
-
434
- # Draw a line segment at the bottom of each handwritten character
435
- for bound, confidence in zip(bounds, confidences):
436
- color = OCREngine.confidence_to_color(confidence)
437
- # Use the bottom two vertices of the bounding box for the line
438
- bottom_left = (bound["vertices"][3]["x"], bound["vertices"][3]["y"] + line_width_thick)
439
- bottom_right = (bound["vertices"][2]["x"], bound["vertices"][2]["y"] + line_width_thick)
440
- draw.line([bottom_left, bottom_right], fill=color, width=line_width_thick)
441
-
442
- return self.image
443
-
444
-
445
- def detect_text(self):
446
-
447
- with io.open(self.path, 'rb') as image_file:
448
- content = image_file.read()
449
- image = vision.Image(content=content)
450
- response = self.client.document_text_detection(image=image)
451
- texts = response.text_annotations
452
-
453
- if response.error.message:
454
- raise Exception(
455
- '{}\nFor more info on error messages, check: '
456
- 'https://cloud.google.com/apis/design/errors'.format(
457
- response.error.message))
458
-
459
- bounds = []
460
- bounds_word = []
461
- text_to_box_mapping = []
462
- bounds_flat = []
463
- height_flat = []
464
- confidences = []
465
- characters = []
466
- organized_text = ""
467
- paragraph_count = 0
468
-
469
- for text in texts[1:]:
470
- vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
471
- map_dict = {
472
- "vertices": vertices,
473
- "text": text.description
474
- }
475
- text_to_box_mapping.append(map_dict)
476
-
477
- for page in response.full_text_annotation.pages:
478
- for block in page.blocks:
479
- # paragraph_count += 1
480
- # organized_text += f'OCR_paragraph_{paragraph_count}:\n' # Add paragraph label
481
- for paragraph in block.paragraphs:
482
-
483
- avg_H_list = []
484
- for word in paragraph.words:
485
- Yw = max(vertex.y for vertex in word.bounding_box.vertices)
486
- # Calculate the width of the word and divide by the number of symbols
487
- word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
488
- num_symbols = len(word.symbols)
489
- if num_symbols <= 3:
490
- H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
491
- else:
492
- Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
493
- X = word_length / num_symbols if num_symbols > 0 else 0
494
- H = int(X+(Yo*0.1))
495
- avg_H_list.append(H)
496
- avg_H = int(mean(avg_H_list))
497
-
498
- words_in_para = []
499
- for word in paragraph.words:
500
- # Get word-level bounding box
501
- bound_word_dict = {
502
- "vertices": [
503
- {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
504
- ]
505
- }
506
- bounds_word.append(bound_word_dict)
507
-
508
- Y = max(vertex.y for vertex in word.bounding_box.vertices)
509
- word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
510
- word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
511
- num_symbols = len(word.symbols)
512
- symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
513
-
514
- current_x_position = word_x_start
515
-
516
- characters_ind = []
517
- for symbol in word.symbols:
518
- bound_dict = {
519
- "vertices": [
520
- {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
521
- ]
522
- }
523
- bounds.append(bound_dict)
524
-
525
- # Create flat bounds with adjusted x position
526
- bounds_flat_dict = {
527
- "vertices": [
528
- {"x": current_x_position, "y": Y},
529
- {"x": current_x_position + symbol_width, "y": Y}
530
- ]
531
- }
532
- bounds_flat.append(bounds_flat_dict)
533
- current_x_position += symbol_width
534
-
535
- height_flat.append(avg_H)
536
- confidences.append(round(symbol.confidence, 4))
537
-
538
- characters_ind.append(symbol.text)
539
- characters.append(symbol.text)
540
-
541
- words_in_para.append(''.join(characters_ind))
542
- paragraph_text = ' '.join(words_in_para) # Join words in paragraph
543
- organized_text += paragraph_text + ' ' #+ '\n'
544
-
545
- # median_height = statistics.median(height_flat) if height_flat else 0
546
- # median_heights = [median_height] * len(characters)
547
-
548
- self.normal_cleaned_text = texts[0].description if texts else ''
549
- self.normal_organized_text = organized_text
550
- self.normal_bounds = bounds
551
- self.normal_bounds_word = bounds_word
552
- self.normal_text_to_box_mapping = text_to_box_mapping
553
- self.normal_bounds_flat = bounds_flat
554
- # self.normal_height = median_heights #height_flat
555
- self.normal_height = height_flat
556
- self.normal_confidences = confidences
557
- self.normal_characters = characters
558
- return self.normal_cleaned_text
559
-
560
-
561
- def detect_handwritten_ocr(self):
562
-
563
- with open(self.path, "rb") as image_file:
564
- content = image_file.read()
565
-
566
- image = vision_beta.Image(content=content)
567
- image_context = vision_beta.ImageContext(language_hints=["en-t-i0-handwrit"])
568
- response = self.client_beta.document_text_detection(image=image, image_context=image_context)
569
- texts = response.text_annotations
570
-
571
- if response.error.message:
572
- raise Exception(
573
- "{}\nFor more info on error messages, check: "
574
- "https://cloud.google.com/apis/design/errors".format(response.error.message)
575
- )
576
-
577
- bounds = []
578
- bounds_word = []
579
- bounds_flat = []
580
- height_flat = []
581
- confidences = []
582
- characters = []
583
- organized_text = ""
584
- paragraph_count = 0
585
- text_to_box_mapping = []
586
-
587
- for text in texts[1:]:
588
- vertices = [{"x": vertex.x, "y": vertex.y} for vertex in text.bounding_poly.vertices]
589
- map_dict = {
590
- "vertices": vertices,
591
- "text": text.description
592
- }
593
- text_to_box_mapping.append(map_dict)
594
-
595
- for page in response.full_text_annotation.pages:
596
- for block in page.blocks:
597
- # paragraph_count += 1
598
- # organized_text += f'\nOCR_paragraph_{paragraph_count}:\n' # Add paragraph label
599
- for paragraph in block.paragraphs:
600
-
601
- avg_H_list = []
602
- for word in paragraph.words:
603
- Yw = max(vertex.y for vertex in word.bounding_box.vertices)
604
- # Calculate the width of the word and divide by the number of symbols
605
- word_length = max(vertex.x for vertex in word.bounding_box.vertices) - min(vertex.x for vertex in word.bounding_box.vertices)
606
- num_symbols = len(word.symbols)
607
- if num_symbols <= 3:
608
- H = int(Yw - min(vertex.y for vertex in word.bounding_box.vertices))
609
- else:
610
- Yo = Yw - min(vertex.y for vertex in word.bounding_box.vertices)
611
- X = word_length / num_symbols if num_symbols > 0 else 0
612
- H = int(X+(Yo*0.1))
613
- avg_H_list.append(H)
614
- avg_H = int(mean(avg_H_list))
615
-
616
- words_in_para = []
617
- for word in paragraph.words:
618
- # Get word-level bounding box
619
- bound_word_dict = {
620
- "vertices": [
621
- {"x": vertex.x, "y": vertex.y} for vertex in word.bounding_box.vertices
622
- ]
623
- }
624
- bounds_word.append(bound_word_dict)
625
-
626
- Y = max(vertex.y for vertex in word.bounding_box.vertices)
627
- word_x_start = min(vertex.x for vertex in word.bounding_box.vertices)
628
- word_x_end = max(vertex.x for vertex in word.bounding_box.vertices)
629
- num_symbols = len(word.symbols)
630
- symbol_width = (word_x_end - word_x_start) / num_symbols if num_symbols > 0 else 0
631
-
632
- current_x_position = word_x_start
633
-
634
- characters_ind = []
635
- for symbol in word.symbols:
636
- bound_dict = {
637
- "vertices": [
638
- {"x": vertex.x, "y": vertex.y} for vertex in symbol.bounding_box.vertices
639
- ]
640
- }
641
- bounds.append(bound_dict)
642
-
643
- # Create flat bounds with adjusted x position
644
- bounds_flat_dict = {
645
- "vertices": [
646
- {"x": current_x_position, "y": Y},
647
- {"x": current_x_position + symbol_width, "y": Y}
648
- ]
649
- }
650
- bounds_flat.append(bounds_flat_dict)
651
- current_x_position += symbol_width
652
-
653
- height_flat.append(avg_H)
654
- confidences.append(round(symbol.confidence, 4))
655
-
656
- characters_ind.append(symbol.text)
657
- characters.append(symbol.text)
658
-
659
- words_in_para.append(''.join(characters_ind))
660
- paragraph_text = ' '.join(words_in_para) # Join words in paragraph
661
- organized_text += paragraph_text + ' ' #+ '\n'
662
-
663
- # median_height = statistics.median(height_flat) if height_flat else 0
664
- # median_heights = [median_height] * len(characters)
665
-
666
- self.hand_cleaned_text = response.text_annotations[0].description if response.text_annotations else ''
667
- self.hand_organized_text = organized_text
668
- self.hand_bounds = bounds
669
- self.hand_bounds_word = bounds_word
670
- self.hand_bounds_flat = bounds_flat
671
- self.hand_text_to_box_mapping = text_to_box_mapping
672
- # self.hand_height = median_heights #height_flat
673
- self.hand_height = height_flat
674
- self.hand_confidences = confidences
675
- self.hand_characters = characters
676
- return self.hand_cleaned_text
677
-
678
-
679
- def process_image(self, do_create_OCR_helper_image, logger):
680
- # Can stack options, so solitary if statements
681
- self.OCR = 'OCR:\n'
682
- if 'CRAFT' in self.OCR_option:
683
- self.do_use_trOCR = True
684
- self.detect_text_craft()
685
- ### Optionally add trOCR to the self.OCR for additional context
686
- if self.double_OCR:
687
- part_OCR = "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
688
- self.OCR = self.OCR + part_OCR + part_OCR
689
- else:
690
- self.OCR = self.OCR + "\CRAFT trOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
691
- # logger.info(f"CRAFT trOCR:\n{self.OCR}")
692
-
693
- if 'LLaVA' in self.OCR_option: # This option does not produce an OCR helper image
694
- if self.json_report:
695
- self.json_report.set_text(text_main=f'Working on LLaVA {self.Llava.model_path} transcription :construction:')
696
-
697
- image, json_output, direct_output, str_output, usage_report = self.Llava.transcribe_image(self.path, self.multimodal_prompt)
698
- self.logger.info(f"LLaVA Usage Report for Model {self.Llava.model_path}:\n{usage_report}")
699
-
700
- try:
701
- self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
702
- except:
703
- self.OCR_JSON_to_file = {}
704
- self.OCR_JSON_to_file['OCR_LLaVA'] = str_output
705
-
706
- if self.double_OCR:
707
- self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}" + f"\nLLaVA OCR:\n{str_output}"
708
- else:
709
- self.OCR = self.OCR + f"\nLLaVA OCR:\n{str_output}"
710
- # logger.info(f"LLaVA OCR:\n{self.OCR}")
711
-
712
- if 'normal' in self.OCR_option or 'hand' in self.OCR_option:
713
- if 'normal' in self.OCR_option:
714
- if self.double_OCR:
715
- part_OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
716
- self.OCR = self.OCR + part_OCR + part_OCR
717
- else:
718
- self.OCR = self.OCR + "\nGoogle Printed OCR:\n" + self.detect_text()
719
- if 'hand' in self.OCR_option:
720
- if self.double_OCR:
721
- part_OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
722
- self.OCR = self.OCR + part_OCR + part_OCR
723
- else:
724
- self.OCR = self.OCR + "\nGoogle Handwritten OCR:\n" + self.detect_handwritten_ocr()
725
- # if self.OCR_option not in ['normal', 'hand', 'both']:
726
- # self.OCR_option = 'both'
727
- # self.detect_text()
728
- # self.detect_handwritten_ocr()
729
-
730
- ### Optionally add trOCR to the self.OCR for additional context
731
- if self.do_use_trOCR:
732
- if self.double_OCR:
733
- part_OCR = "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
734
- self.OCR = self.OCR + part_OCR + part_OCR
735
- else:
736
- self.OCR = self.OCR + "\ntrOCR:\n" + self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
737
- # logger.info(f"OCR:\n{self.OCR}")
738
- else:
739
- # populate self.OCR_JSON_to_file = {}
740
- _ = self.detect_text_with_trOCR_using_google_bboxes(self.do_use_trOCR, logger)
741
-
742
-
743
- if do_create_OCR_helper_image and ('LLaVA' not in self.OCR_option):
744
- self.image = Image.open(self.path)
745
-
746
- if 'normal' in self.OCR_option:
747
- image_with_boxes_normal = self.draw_boxes('normal')
748
- text_image_normal = self.render_text_on_black_image('normal')
749
- self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_normal)
750
-
751
- if 'hand' in self.OCR_option:
752
- image_with_boxes_hand = self.draw_boxes('hand')
753
- text_image_hand = self.render_text_on_black_image('hand')
754
- self.merged_image_hand = self.merge_images(image_with_boxes_hand, text_image_hand)
755
-
756
- if self.do_use_trOCR:
757
- text_image_trOCR = self.render_text_on_black_image('trOCR')
758
-
759
- if 'CRAFT' in self.OCR_option:
760
- image_with_boxes_normal = self.draw_boxes('normal')
761
- self.merged_image_normal = self.merge_images(image_with_boxes_normal, text_image_trOCR)
762
-
763
- ### Merge final overlay image
764
- ### [original, normal bboxes, normal text]
765
- if 'CRAFT' in self.OCR_option or 'normal' in self.OCR_option:
766
- self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_normal)
767
- ### [original, hand bboxes, hand text]
768
- elif 'hand' in self.OCR_option:
769
- self.overlay_image = self.merge_images(Image.open(self.path), self.merged_image_hand)
770
- ### [original, normal bboxes, normal text, hand bboxes, hand text]
771
- else:
772
- self.overlay_image = self.merge_images(Image.open(self.path), self.merge_images(self.merged_image_normal, self.merged_image_hand))
773
-
774
- if self.do_use_trOCR:
775
- if 'CRAFT' in self.OCR_option:
776
- heat_map_text = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["text_score_heatmap"], cv2.COLOR_BGR2RGB))
777
- heat_map_link = Image.fromarray(cv2.cvtColor(self.prediction_result["heatmaps"]["link_score_heatmap"], cv2.COLOR_BGR2RGB))
778
- self.overlay_image = self.merge_images(self.overlay_image, heat_map_text)
779
- self.overlay_image = self.merge_images(self.overlay_image, heat_map_link)
780
-
781
- else:
782
- self.overlay_image = self.merge_images(self.overlay_image, text_image_trOCR)
783
-
784
- else:
785
- self.merged_image_normal = None
786
- self.merged_image_hand = None
787
- self.overlay_image = Image.open(self.path)
788
-
789
- try:
790
- from craft_text_detector import empty_cuda_cache
791
- empty_cuda_cache()
792
- except:
793
- pass
794
-
795
- class SafetyCheck():
796
- def __init__(self, is_hf) -> None:
797
- self.is_hf = is_hf
798
- self.set_client()
799
-
800
- def set_client(self):
801
- if self.is_hf:
802
- self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
803
- else:
804
- self.client = vision.ImageAnnotatorClient(credentials=self.get_google_credentials())
805
-
806
- def get_google_credentials(self):
807
- creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
808
- credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
809
- return credentials
810
-
811
- def check_for_inappropriate_content(self, file_stream):
812
- try:
813
- LEVEL = 2
814
- # content = file_stream.read()
815
- file_stream.seek(0) # Reset file stream position to the beginning
816
- content = file_stream.read()
817
- image = vision.Image(content=content)
818
- response = self.client.safe_search_detection(image=image)
819
- safe = response.safe_search_annotation
820
-
821
- likelihood_name = (
822
- "UNKNOWN",
823
- "VERY_UNLIKELY",
824
- "UNLIKELY",
825
- "POSSIBLE",
826
- "LIKELY",
827
- "VERY_LIKELY",
828
- )
829
- print("Safe search:")
830
-
831
- print(f" adult*: {likelihood_name[safe.adult]}")
832
- print(f" medical*: {likelihood_name[safe.medical]}")
833
- print(f" spoofed: {likelihood_name[safe.spoof]}")
834
- print(f" violence*: {likelihood_name[safe.violence]}")
835
- print(f" racy: {likelihood_name[safe.racy]}")
836
-
837
- # Check the levels of adult, violence, racy, etc. content.
838
- if (safe.adult > LEVEL or
839
- safe.medical > LEVEL or
840
- # safe.spoof > LEVEL or
841
- safe.violence > LEVEL #or
842
- # safe.racy > LEVEL
843
- ):
844
- print("Found violation")
845
- return True # The image violates safe search guidelines.
846
-
847
- print("Found NO violation")
848
- return False # The image is considered safe.
849
- except:
850
- return False # The image is considered safe. TEMPOROARY FIX TODO