# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han # International Conference on Computer Vision (ICCV), 2023 from efficientvit.models.efficientvit import ( EfficientViTCls, efficientvit_cls_b0, efficientvit_cls_b1, efficientvit_cls_b2, efficientvit_cls_b3, efficientvit_cls_l1, efficientvit_cls_l2, efficientvit_cls_l3, ) from efficientvit.models.nn.norm import set_norm_eps from efficientvit.models.utils import load_state_dict_from_file __all__ = ["create_cls_model"] REGISTERED_CLS_MODEL: dict[str, str] = { "b0-r224": "assets/checkpoints/cls/b0-r224.pt", ############################################### "b1-r224": "assets/checkpoints/cls/b1-r224.pt", "b1-r256": "assets/checkpoints/cls/b1-r256.pt", "b1-r288": "assets/checkpoints/cls/b1-r288.pt", ############################################### "b2-r224": "assets/checkpoints/cls/b2-r224.pt", "b2-r256": "assets/checkpoints/cls/b2-r256.pt", "b2-r288": "assets/checkpoints/cls/b2-r288.pt", ############################################### "b3-r224": "assets/checkpoints/cls/b3-r224.pt", "b3-r256": "assets/checkpoints/cls/b3-r256.pt", "b3-r288": "assets/checkpoints/cls/b3-r288.pt", ############################################### "l1-r224": "assets/checkpoints/cls/l1-r224.pt", ############################################### "l2-r224": "assets/checkpoints/cls/l2-r224.pt", "l2-r256": "assets/checkpoints/cls/l2-r256.pt", "l2-r288": "assets/checkpoints/cls/l2-r288.pt", "l2-r320": "assets/checkpoints/cls/l2-r320.pt", "l2-r384": "assets/checkpoints/cls/l2-r384.pt", ############################################### "l3-r224": "assets/checkpoints/cls/l3-r224.pt", "l3-r256": "assets/checkpoints/cls/l3-r256.pt", "l3-r288": "assets/checkpoints/cls/l3-r288.pt", "l3-r320": "assets/checkpoints/cls/l3-r320.pt", "l3-r384": "assets/checkpoints/cls/l3-r384.pt", } def create_cls_model(name: str, pretrained=True, weight_url: str or None = None, **kwargs) -> EfficientViTCls: model_dict = { "b0": efficientvit_cls_b0, "b1": efficientvit_cls_b1, "b2": efficientvit_cls_b2, "b3": efficientvit_cls_b3, ######################### "l1": efficientvit_cls_l1, "l2": efficientvit_cls_l2, "l3": efficientvit_cls_l3, } model_id = name.split("-")[0] if model_id not in model_dict: raise ValueError(f"Do not find {name} in the model zoo. List of models: {list(model_dict.keys())}") else: model = model_dict[model_id](**kwargs) if model_id in ["l1", "l2", "l3"]: set_norm_eps(model, 1e-7) if pretrained: weight_url = weight_url or REGISTERED_CLS_MODEL.get(name, None) if weight_url is None: raise ValueError(f"Do not find the pretrained weight of {name}.") else: weight = load_state_dict_from_file(weight_url) model.load_state_dict(weight) return model