Spaces:
Sleeping
Sleeping
File size: 7,405 Bytes
26d5af7 7415b0a 26d5af7 eaa3c03 26d5af7 4afc829 26d5af7 4afc829 c8e684e 4afc829 26d5af7 cbf2168 26d5af7 7415b0a 4afc829 7415b0a 4afc829 7415b0a 26d5af7 c8e684e 4afc829 bfa8c07 26d5af7 4afc829 26d5af7 7415b0a 4afc829 26d5af7 4afc829 26d5af7 bfa8c07 4afc829 bfa8c07 26d5af7 4afc829 7415b0a 26d5af7 c8e684e 4afc829 bfa8c07 26d5af7 45a771e 26d5af7 45a771e 4afc829 bfa8c07 4afc829 26d5af7 7415b0a 4afc829 26d5af7 bfa8c07 4afc829 bfa8c07 26d5af7 7415b0a 26d5af7 c8e684e 4afc829 bfa8c07 26d5af7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from typing import List
from inference.models import YOLOWorld
from efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
from efficientvit.sam_model_zoo import create_sam_model
MARKDOWN = """
# YOLO-World + EfficientViT-SAM
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and [Supervision](https://github.com/roboflow/supervision) and [YOLO-World](https://github.com/AILab-CVC/YOLO-World) and [EfficientViT-SAM](https://github.com/mit-han-lab/efficientvit)
\n
Github Source Code: [Link](https://github.com/pg56714/YOLO-World_EfficientViT-SAM)
"""
IMAGE_EXAMPLES = [
[
os.path.join(os.path.dirname(__file__), "images/livingroom.jpg"),
"table, lamp, dog, sofa, plant, clock, carpet, frame on the wall",
0.05,
0.5,
True,
# True,
True,
],
[
os.path.join(os.path.dirname(__file__), "images/cat_and_dogs.jpg"),
"cat, dog",
0.2,
0.5,
True,
# True,
True,
],
]
# Load models
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/s")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/m")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/x")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/v2-s")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/v2-m")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/v2-l")
# YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/v2-x")
device = "cuda" if torch.cuda.is_available() else "cpu"
sam = EfficientViTSamPredictor(
create_sam_model(name="xl1", weight_url="./weights/xl1.pt").to(device).eval()
)
# Load annotators
BOUNDING_BOX_ANNOTATOR = sv.BoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
def process_categories(categories: str) -> List[str]:
return [category.strip() for category in categories.split(",")]
def annotate_image(
input_image: np.ndarray,
detections: sv.Detections,
categories: List[str],
with_confidence: bool = True,
) -> np.ndarray:
labels = [
(
f"{categories[class_id]}: {confidence:.3f}"
if with_confidence
else f"{categories[class_id]}"
)
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
def process_image(
input_image: np.ndarray,
categories: str,
confidence_threshold: float,
nms_threshold: float,
with_confidence: bool = True,
# with_class_agnostic_nms: bool = True,
with_segmentation: bool = True,
) -> np.ndarray:
global exclude_positions
# Preparation.
categories = process_categories(categories)
YOLO_WORLD_MODEL.set_classes(categories)
# print("categories:", categories)
# Object detection
results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
detections = sv.Detections.from_inference(results).with_nms(
class_agnostic=True, threshold=nms_threshold
)
# print("detected:", detections)
# Segmentation
if with_segmentation:
sam.set_image(input_image, image_format="RGB")
masks = []
for xyxy in detections.xyxy:
mask, _, _ = sam.predict(box=xyxy, multimask_output=False)
masks.append(mask.squeeze())
detections.mask = np.array(masks)
# print("masks shaped as", detections.mask.shape)
# Annotation
output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
output_image = annotate_image(
input_image=output_image,
detections=detections,
categories=categories,
with_confidence=with_confidence,
)
return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
confidence_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.005,
step=0.01,
label="Confidence Threshold",
info=(
"The confidence threshold for the YOLO-World model. Lower the threshold to "
"reduce false negatives, enhancing the model's sensitivity to detect "
"sought-after objects. Conversely, increase the threshold to minimize false "
"positives, preventing the model from identifying objects it shouldn't."
),
)
iou_threshold_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.01,
label="IoU Threshold",
info=(
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
"making the detection process stricter. On the other hand, increase the value "
"to allow more overlapping bounding boxes, accommodating a broader range of "
"detections."
),
)
with_confidence_component = gr.Checkbox(
value=True,
label="Display Confidence",
info=("Whether to display the confidence of the detected objects."),
)
# with_class_agnostic_nms_component = gr.Checkbox(
# value=True,
# label="Use Class-Agnostic NMS",
# info=("Suppress overlapping detections across different classes."),
# )
with_segmentation_component = gr.Checkbox(
value=True,
label="With Segmentation",
info=("Whether to run EfficientViT-SAM for instance segmentation."),
)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
input_image_component = gr.Image(type="numpy", label="Input Image")
yolo_world_output_image_component = gr.Image(type="numpy", label="Output image")
with gr.Row():
image_categories_text_component = gr.Textbox(
label="Categories",
placeholder="you can input multiple words with comma (,)",
scale=7,
)
submit_button_component = gr.Button(value="Submit", scale=1, variant="primary")
with gr.Accordion("Configuration", open=False):
confidence_threshold_component.render()
iou_threshold_component.render()
with gr.Row():
with_confidence_component.render()
# with_class_agnostic_nms_component.render()
with_segmentation_component.render()
gr.Examples(
# fn=process_image,
examples=IMAGE_EXAMPLES,
inputs=[
input_image_component,
image_categories_text_component,
confidence_threshold_component,
iou_threshold_component,
with_confidence_component,
# with_class_agnostic_nms_component,
with_segmentation_component,
],
outputs=yolo_world_output_image_component,
)
submit_button_component.click(
fn=process_image,
inputs=[
input_image_component,
image_categories_text_component,
confidence_threshold_component,
iou_threshold_component,
with_confidence_component,
# with_class_agnostic_nms_component,
with_segmentation_component,
],
outputs=yolo_world_output_image_component,
)
demo.launch(debug=False, show_error=True)
|