#!/usr/bin/env python from __future__ import annotations import sys import os import datetime import gradio as gr import spaces @spaces.GPU(duration=60 * 3) def run_on_gpu(input_point_cloud: gr.utils.NamedString, gen_resolution_global: int, padding_factor: float, gen_subsample_manifold_iter: int, gen_refine_iter: int): print('Started inference at {}'.format(datetime.datetime.now())) print('Inputs:', input_point_cloud, gen_resolution_global, padding_factor, gen_subsample_manifold_iter, gen_refine_iter) print('Types:', type(input_point_cloud), type(gen_resolution_global), type(padding_factor), type(gen_subsample_manifold_iter), type(gen_refine_iter)) sys.path.append(os.path.abspath('ppsurf')) import subprocess import uuid in_file = '{}'.format(input_point_cloud.name) # append 'rec' to the input file name # splitext_result = os.path.splitext(in_file) rand_hash = uuid.uuid4().hex out_dir = '/tmp/outputs/{}'.format(rand_hash) # out_file = os.path.join(out_dir, in_file, in_file + '.ply') out_file_basename = os.path.basename(in_file) + '.ply' out_file = os.path.join(out_dir, os.path.basename(in_file), out_file_basename) os.makedirs(out_dir, exist_ok=True) model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt' args = [ 'pps.py', 'predict', '-c', 'ppsurf/configs/poco.yaml', '-c', 'ppsurf/configs/ppsurf.yaml', '-c', 'ppsurf/configs/ppsurf_50nn.yaml', '--ckpt_path', model_path, '--data.init_args.in_file', in_file, '--model.init_args.results_dir', out_dir, '--trainer.logger', 'False', '--trainer.devices', '1', '--model.init_args.gen_resolution_global', str(gen_resolution_global), '--data.init_args.padding_factor', str(padding_factor), '--model.init_args.gen_subsample_manifold_iter', str(gen_subsample_manifold_iter), '--model.init_args.gen_refine_iter', str(gen_refine_iter), ] sys.argv = args subprocess.run(['python', 'ppsurf/pps.py'] + args[1:]) # need subprocess to spawn workers print('Finished inference at {}'.format(datetime.datetime.now())) result_3d_model = out_file progress_text = 'done' return result_3d_model, progress_text def main(): description = '''# [PPSurf](https://github.com/cg-tuwien/ppsurf) Supported file formats: - PLY, STL, OBJ and other mesh files, - XYZ as whitespace-separated text file, - NPY and NPZ (key='arr_0'), - LAS and LAZ (version 1.0-1.4), COPC and CRS. Best results for 50k-250k points. This method is meant for scans of single and few objects. Quality for scenes and landscapes will be lower. Inference takes about 2 minutes. ''' # can't render many input types directly in Gradio Model3D # so we need to convert to supported format # Gradio can't draw point clouds anyway, so we skip this for now # def convert_to_ply(input_point_cloud_upload: gr.utils.NamedString): # # # add absolute path to import dirs # import sys # import os # sys.path.append(os.path.abspath('ppsurf')) # # # import os # # os.chdir('ppsurf') # # print('Inputs:', input_point_cloud_upload, type(input_point_cloud_upload)) # input_shape: str = input_point_cloud_upload.name # if not input_shape.endswith('.ply'): # # load file # from ppsurf.source.occupancy_data_module import OccupancyDataModule # pts_np = OccupancyDataModule.load_pts(input_shape) # # # convert to ply # import trimesh # mesh = trimesh.Trimesh(vertices=pts_np[:, :3]) # input_shape = input_shape + '.ply' # mesh.export(input_shape) # # print('ls:\n', subprocess.run(['ls', os.path.dirname(input_shape)])) # # # show in viewer # print(type(input_tabs)) # # print(type(input_point_cloud_viewer)) # # input_tabs.selected = 'pc_viewer' # # input_point_cloud_viewer.value = input_shape if (SPACE_ID := os.getenv('SPACE_ID')) is not None: description += (f'\n
For faster inference without waiting in queue, '
f'you may duplicate the space and upgrade to GPU in settings. '
f''
f'