File size: 5,025 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch.nn as nn
import torch
from lib.config import cfg
from .embedder import get_embedder
import torch.nn.functional as F


class Nerf(nn.Module):
    def __init__(self,
                 D=8,
                 W=256,
                 input_ch=3,
                 input_ch_views=3,
                 skips=[4],
                 use_viewdirs=False):
        """
        """
        super(Nerf, self).__init__()

        self.D = D
        self.W = W
        self.input_ch = input_ch
        self.input_ch_views = input_ch_views
        self.skips = skips
        self.use_viewdirs = use_viewdirs

        self.pts_linears = nn.ModuleList([nn.Linear(input_ch, W)] + [
            nn.Linear(W, W) if i not in
            self.skips else nn.Linear(W + input_ch, W) for i in range(D - 1)
        ])

        ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
        self.views_linears = nn.ModuleList(
            [nn.Linear(input_ch_views + W, W // 2)])

        ### Implementation according to the paper
        # self.views_linears = nn.ModuleList(
        #     [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])

        if self.use_viewdirs:
            self.feature_linear = nn.Linear(W, W)
            self.alpha_linear = nn.Linear(W, 1)
            self.rgb_linear = nn.Linear(W // 2, 3)

    def forward(self, x):
        input_pts = x
        h = input_pts
        for i, l in enumerate(self.pts_linears):
            h = self.pts_linears[i](h)
            h = F.relu(h)
            if i in self.skips:
                h = torch.cat([input_pts, h], -1)
        alpha = self.alpha_linear(h)
        return alpha

    def load_weights_from_keras(self, weights):
        assert self.use_viewdirs, "Not implemented if use_viewdirs=False"

        # Load pts_linears
        for i in range(self.D):
            idx_pts_linears = 2 * i
            self.pts_linears[i].weight.data = torch.from_numpy(
                np.transpose(weights[idx_pts_linears]))
            self.pts_linears[i].bias.data = torch.from_numpy(
                np.transpose(weights[idx_pts_linears + 1]))

        # Load feature_linear
        idx_feature_linear = 2 * self.D
        self.feature_linear.weight.data = torch.from_numpy(
            np.transpose(weights[idx_feature_linear]))
        self.feature_linear.bias.data = torch.from_numpy(
            np.transpose(weights[idx_feature_linear + 1]))

        # Load views_linears
        idx_views_linears = 2 * self.D + 2
        self.views_linears[0].weight.data = torch.from_numpy(
            np.transpose(weights[idx_views_linears]))
        self.views_linears[0].bias.data = torch.from_numpy(
            np.transpose(weights[idx_views_linears + 1]))

        # Load rgb_linear
        idx_rbg_linear = 2 * self.D + 4
        self.rgb_linear.weight.data = torch.from_numpy(
            np.transpose(weights[idx_rbg_linear]))
        self.rgb_linear.bias.data = torch.from_numpy(
            np.transpose(weights[idx_rbg_linear + 1]))

        # Load alpha_linear
        idx_alpha_linear = 2 * self.D + 6
        self.alpha_linear.weight.data = torch.from_numpy(
            np.transpose(weights[idx_alpha_linear]))
        self.alpha_linear.bias.data = torch.from_numpy(
            np.transpose(weights[idx_alpha_linear + 1]))


class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()

        self.embed_fn, input_ch = get_embedder(cfg.xyz_res)
        self.embeddirs_fn, input_ch_views = get_embedder(cfg.view_res)

        skips = [4]
        self.model = Nerf(D=cfg.netdepth,
                          W=cfg.netwidth,
                          input_ch=input_ch,
                          skips=skips,
                          input_ch_views=input_ch_views,
                          use_viewdirs=cfg.use_viewdirs)

        # self.model_fine = Nerf(D=cfg.netdepth_fine,
        #                        W=cfg.netwidth_fine,
        #                        input_ch=input_ch,
        #                        skips=skips,
        #                        input_ch_views=input_ch_views,
        #                        use_viewdirs=cfg.use_viewdirs)

    def batchify(self, fn, chunk):
        """Constructs a version of 'fn' that applies to smaller batches.
        """
        def ret(inputs):
            return torch.cat([fn(inputs[i:i+chunk]) for i in range(0, inputs.shape[0], chunk)], 0)
        return ret

    def forward(self, inputs, model=''):
        """Prepares inputs and applies network 'fn'.
        """
        if model == 'fine':
            fn = self.model_fine
        else:
            fn = self.model

        inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]])
        embedded = self.embed_fn(inputs_flat)
        outputs_flat = self.batchify(fn, cfg.netchunk)(embedded)
        outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])

        return outputs