import gradio as gr import os import time from haystack.document_stores import InMemoryDocumentStore from haystack.nodes import EmbeddingRetriever import pandas as pd from deep_translator import GoogleTranslator def load_qa_model(): document_store = InMemoryDocumentStore() retriever = EmbeddingRetriever( document_store=document_store, embedding_model="sentence-transformers/all-MiniLM-L6-v2", use_gpu=False, scale_score=False, ) # Get dataframe with columns "question", "answer" and some custom metadata df = pd.read_csv('social-faq.csv', on_bad_lines='skip', delimiter=';') # Minimal cleaning df.fillna(value="", inplace=True) df["question"] = df["question"].apply(lambda x: x.strip()) questions = list(df["question"].values) df["embedding"] = retriever.embed_queries(queries=questions).tolist() df = df.rename(columns={"question": "content"}) # Convert Dataframe to list of dicts and index them in our DocumentStore docs_to_index = df.to_dict(orient="records") document_store.write_documents(docs_to_index) return retriever def add_text(chat_history, text): chat_history = chat_history + [(text, None)] return chat_history, gr.Textbox(value="", interactive=False) def add_file(chat_history, file): chat_history = chat_history + [((file.name,), None)] return chat_history def chatbot_response(chat_history, language): chat_history[-1][1] = "" global retriever global last_answer if language == 'pt-br': response = get_answers(retriever, GoogleTranslator(source='pt', target='en').translate(chat_history[-1][0])) response = GoogleTranslator(source='en', target='pt').translate(response) else: response = get_answers(retriever, history[-1][0]) last_answer = response for character in response: chat_history[-1][1] += character time.sleep(0.01) yield chat_history def get_answers(retriever, query): from haystack.pipelines import FAQPipeline pipe = FAQPipeline(retriever=retriever) from haystack.utils import print_answers # Run any question and change top_k to see more or less answers prediction = pipe.run(query=query, params={"Retriever": {"top_k": 1}}) answers = prediction['answers'] if answers: return answers[0].answer else: return "I don't have an answer to that question" retriever = load_qa_model() last_answer = "" with gr.Blocks() as demo: with gr.Accordion("Settings", open=False): language = gr.Radio(["en-us", "pt-br"], label="Language", info="Choose the language to display the classification result and audio", value='en-us', interactive=True) with gr.Tab("Help"): chatbot = gr.Chatbot( [], elem_id="chatbot", bubble_full_width=False, # avatar_images=(None, "content/avatar-socialear.png"), ) with gr.Row(): txt = gr.Textbox( scale=4, show_label=False, placeholder="Enter text and press enter", container=False, ) inputRecord = gr.Audio(label="Record a question", source="microphone", type="filepath") with gr.Column(): btn = gr.Button(value="Listen the answer") audioOutput = gr.Audio(interactive=False) txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( chatbot_response, [chatbot, language], chatbot ) txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) demo.queue() demo.launch()