import torch from transformers import pipeline from transformers import GPT2LMHeadModel, GPT2Tokenizer from google.colab import files # device = torch.device("cpu" if torch.cuda.is_available() else "cuda") device = torch.device("cpu") # Load the GPT-2 model and tokenizer model = GPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Add a padding token to the tokenizer tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Move the model to the appropriate device model = model.to(device) # Upload your documents uploaded_files = files.upload() training_data = [] for file_name, content in uploaded_files.items(): try: document = content.decode("utf-8") except UnicodeDecodeError: document = content.decode("latin-1") training_data.append(document) # Fine-tuning the GPT-2 model tokenized_data = tokenizer('\n\n'.join(training_data), truncation=True, padding=True, max_length=256, return_tensors="pt") model.resize_token_embeddings(len(tokenizer)) # Define the loss function loss_function = torch.nn.CrossEntropyLoss() # Define the training loop optimizer = torch.optim.AdamW(model.parameters(), lr=3e-5) # optimizer = torch.nn.Module(optimizer) # optimizer = optimizer.to(device) model.train() accumulation_steps = 4 batch_size = 4 for epoch in range(3): for i in range(0, len(tokenized_data['input_ids']), batch_size): input_ids_batch = tokenized_data['input_ids'][i:i + batch_size].to(device, non_blocking=True) outputs = model(input_ids_batch) logits = outputs.logits loss = loss_function(logits.view(-1, model.config.vocab_size), input_ids_batch.view(-1)) loss.backward() optimizer.step() optimizer.zero_grad() print(f"Epoch: {epoch+1}, Batch: {i+1}/{len(tokenized_data['input_ids'])//batch_size}, Loss: {loss.item()}") if (i + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # Start chatting with your trained model while True: user_input = input("User: ") input_ids = tokenizer.encode(user_input, return_tensors='pt').to(device) generate = pipeline('text-generation', model='gpt2') output = model.generate(input_ids=input_ids, max_length=100, num_return_sequences=1) response = tokenizer.decode(output[0]) print("ChatBot:", response) break # Add a condition to break the while loop