import gradio as gr import torch import dlib import numpy as np import PIL # Only used to convert to gray, could do it differently and remove this big dependency import cv2 from diffusers import StableDiffusionControlNetPipeline, ControlNetModel from diffusers import UniPCMultistepScheduler from spiga.inference.config import ModelConfig from spiga.inference.framework import SPIGAFramework import matplotlib.pyplot as plt from matplotlib.path import Path import matplotlib.patches as patches # Bounding boxes face_detector = dlib.get_frontal_face_detector() # Landmark extraction spiga_extractor = SPIGAFramework(ModelConfig("300wpublic")) uncanny_controlnet = ControlNetModel.from_pretrained( "multimodalart/uncannyfaces_25K", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", controlnet=uncanny_controlnet, safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") # Generator seed, generator = torch.manual_seed(0) def get_bounding_box(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_detector(gray) if len(faces) == 0: raise Exception("No face detected in image") face = faces[0] bbox = [face.left(), face.top(), face.width(), face.height()] return bbox def get_landmarks(image, bbox): features = spiga_extractor.inference(image, [bbox]) return features['landmarks'][0] def get_patch(landmarks, color='lime', closed=False): contour = landmarks ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1) facecolor = (0, 0, 0, 0) # Transparent fill color, if open if closed: contour.append(contour[0]) ops.append(Path.CLOSEPOLY) facecolor = color path = Path(contour, ops) return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4) def conditioning_from_landmarks(landmarks, size=512): # Precisely control output image size dpi = 72 fig, ax = plt.subplots( 1, figsize=[size/dpi, size/dpi], tight_layout={'pad': 0}) fig.set_dpi(dpi) black = np.zeros((size, size, 3)) ax.imshow(black) face_patch = get_patch(landmarks[0:17]) l_eyebrow = get_patch(landmarks[17:22], color='yellow') r_eyebrow = get_patch(landmarks[22:27], color='yellow') nose_v = get_patch(landmarks[27:31], color='orange') nose_h = get_patch(landmarks[31:36], color='orange') l_eye = get_patch(landmarks[36:42], color='magenta', closed=True) r_eye = get_patch(landmarks[42:48], color='magenta', closed=True) outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True) inner_lips = get_patch(landmarks[60:68], color='blue', closed=True) ax.add_patch(face_patch) ax.add_patch(l_eyebrow) ax.add_patch(r_eyebrow) ax.add_patch(nose_v) ax.add_patch(nose_h) ax.add_patch(l_eye) ax.add_patch(r_eye) ax.add_patch(outer_lips) ax.add_patch(inner_lips) plt.axis('off') fig.canvas.draw() buffer, (width, height) = fig.canvas.print_to_buffer() assert width == height assert width == size buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4)) buffer = buffer[:, :, 0:3] plt.close(fig) return PIL.Image.fromarray(buffer) def get_conditioning(image): # Steps: convert to BGR and then: # - Retrieve bounding box using `dlib` # - Obtain landmarks using `spiga` # - Create conditioning image with custom `matplotlib` code # TODO: error if bbox is too small image.thumbnail((512, 512)) image = np.array(image) image = image[:, :, ::-1] bbox = get_bounding_box(image) landmarks = get_landmarks(image, bbox) spiga_seg = conditioning_from_landmarks(landmarks) return spiga_seg def generate_images(image, prompt, image_video=None): if image is None and image_video is None: raise gr.Error("Please provide an image") if image_video is not None: image = image_video try: conditioning = get_conditioning(image) output = pipe( prompt, conditioning, generator=generator, num_images_per_prompt=3, num_inference_steps=20, ) return [conditioning] + output.images except Exception as e: raise gr.Error(str(e)) def toggle(choice): if choice == "webcam": return gr.update(visible=True, value=None), gr.update(visible=False, value=None) else: return gr.update(visible=False, value=None), gr.update(visible=True, value=None) with gr.Blocks() as blocks: gr.Markdown(""" ## Generate controlled outputs with ControlNet and Stable Diffusion. This Space uses a custom visualization based on SPIGA face landmarks for conditioning. """) with gr.Row(): with gr.Column(): image_or_file_opt = gr.Radio(["file", "webcam"], value="file", label="How would you like to upload your image?") image_in_video = gr.Image( source="webcam", type="pil", visible=False) image_in_img = gr.Image( source="upload", visible=True, type="pil") image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt], outputs=[image_in_video, image_in_img], queue=False) prompt = gr.Textbox( label="Enter your prompt", max_lines=1, placeholder="best quality, extremely detailed", ) run_button = gr.Button("Generate") with gr.Column(): gallery = gr.Gallery().style(grid=[2], height="auto") run_button.click(fn=generate_images, inputs=[image_in_img, prompt, image_in_video], outputs=[gallery]) gr.Examples(fn=generate_images, examples=[ ["./examples/pedro-512.jpg", "Highly detailed photograph of young woman smiling, with palm trees in the background"], ["./examples/image1.jpg", "Highly detailed photograph of a scary clown"], ["./examples/image0.jpg", "Highly detailed photograph of Barack Obama"], ], inputs=[image_in_img, prompt], outputs=[gallery], cache_examples=True) blocks.launch()