import gradio as gr from audiosr import super_resolution, build_model import spaces audiosr = build_model(model_name='basic') audiosr_speech = build_model(model_name='speech') models = { 'basic': audiosr, 'speech': audiosr_speech } @spaces.GPU def inference(audio_file, model_name, guidance_scale, ddim_steps): audiosr = models[model_name] waveform = super_resolution( audiosr, audio_file, guidance_scale=guidance_scale, ddim_steps=ddim_steps ) return (44100, waveform) iface = gr.Interface( fn=inference, inputs=[ gr.Audio(type="filepath", label="Input Audio"), gr.Dropdown(["basic", "speech"], value="basic", label="Model"), gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale"), gr.Slider(1, 100, value=50, step=1, label="DDIM Steps") ], outputs=gr.Audio(type="numpy", label="Output Audio"), title="AudioSR", description="Audio Super Resolution with AudioSR" ) iface.launch()