import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch import theme theme = theme.Theme() import os import sys sys.path.append('../..') #langchain from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.prompts import ChatPromptTemplate from langchain.schema import StrOutputParser from langchain.schema.runnable import Runnable from langchain.schema.runnable.config import RunnableConfig from langchain.chains import ( LLMChain, ConversationalRetrievalChain) from langchain.vectorstores import Chroma from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain from langchain.prompts.prompt import PromptTemplate from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder from langchain.document_loaders import PyPDFDirectoryLoader from langchain_community.llms import HuggingFaceHub from pydantic import BaseModel import shutil # Cell 1: Image Classification Model image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1") def predict_image(input_img): predictions = image_pipeline(input_img) return {p["label"]: p["score"] for p in predictions} image_gradio_app = gr.Interface( fn=predict_image, inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"), outputs=[gr.Label(label="Result")], title="Green Greta", theme=theme ) # Cell 2: Chatbot Model loader = PyPDFDirectoryLoader('pdfs') data=loader.load() # split documents text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=70, length_function=len ) docs = text_splitter.split_documents(data) # define embedding embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small') # create vector database from data persist_directory = 'docs/chroma/' # Remove old database files if any shutil.rmtree(persist_directory, ignore_errors=True) vectordb = Chroma.from_documents( documents=docs, embedding=embeddings, persist_directory=persist_directory ) # define retriever retriever = vectordb.as_retriever(search_type="mmr") template = """ Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish / Use the following pieces of context to answer the question if the question is related with recycling / No more than two chunks of context / Answer in the same language of the question / Always say "thanks for asking!" at the end of the answer / If the context is not relevant, please answer the question by using your own knowledge about the topic. context: {context} question: {question} """ # Create the chat prompt templates system_prompt = SystemMessagePromptTemplate.from_template(template) qa_prompt = ChatPromptTemplate( messages=[ system_prompt, MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template("{question}") ] ) llm = HuggingFaceHub( repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", task="text-generation", model_kwargs={ "max_new_tokens": 1024, "top_k": 30, "temperature": 0.1, "repetition_penalty": 1.03, }, ) memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) qa_chain = ConversationalRetrievalChain.from_llm( llm = llm, memory = memory, retriever = retriever, verbose = True, combine_docs_chain_kwargs={'prompt': qa_prompt}, get_chat_history = lambda h : h, rephrase_question = False, output_key = 'answer' ) def chat_interface(question,history): result = qa_chain.invoke({"question": question}) return result['answer'] # If the result is a string, return it directly chatbot_gradio_app = gr.ChatInterface( fn=chat_interface, title='Green Greta' ) # Combine both interfaces into a single app gr.TabbedInterface( [image_gradio_app, chatbot_gradio_app], tab_names=["Green Greta Image Classification","Green Greta Chat"], theme=theme ).launch()