import gradio as gr import spaces import torch from gradio_rerun import Rerun import rerun as rr from pathlib import Path from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result from mini_dust3r.model import AsymmetricCroCo3DStereo DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model = AsymmetricCroCo3DStereo.from_pretrained( "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" ).to(DEVICE) @spaces.GPU def predict(image_dir: str): rr.init("my data") optimized_results: OptimizedResult = inferece_dust3r( image_dir=image_dir, model=model, device=DEVICE, batch_size=1, ) log_optimized_result(optimized_results, Path("world")) rr.save("dust3r.rrd") return "dust3r.rrd" with gr.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference gr.HTML('