import gradio as gr import requests from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM import torch MAX_SOURCE_LENGTH = 512 def prepare_models(): tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer") tokenizer.special_dict = { f"": tokenizer.get_vocab()[f""] for i in range(99, -1, -1) } tokenizer.mask_id = tokenizer.get_vocab()[""] tokenizer.bos_id = tokenizer.get_vocab()[""] tokenizer.pad_id = tokenizer.get_vocab()[""] tokenizer.eos_id = tokenizer.get_vocab()[""] tokenizer.msg_id = tokenizer.get_vocab()[""] tokenizer.keep_id = tokenizer.get_vocab()[""] tokenizer.add_id = tokenizer.get_vocab()[""] tokenizer.del_id = tokenizer.get_vocab()[""] tokenizer.start_id = tokenizer.get_vocab()[""] tokenizer.end_id = tokenizer.get_vocab()[""] model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/codereviewer") model.eval() return tokenizer, model def pad_assert(tokenizer, source_ids): source_ids = source_ids[:MAX_SOURCE_LENGTH - 2] source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id] pad_len = MAX_SOURCE_LENGTH - len(source_ids) source_ids += [tokenizer.pad_id] * pad_len assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length." return source_ids def encode_diff(tokenizer, diff, msg, source): difflines = diff.split("\n")[1:] # remove start @@ difflines = [line for line in difflines if len(line.strip()) > 0] map_dic = {"-": 0, "+": 1, " ": 2} def f(s): if s in map_dic: return map_dic[s] else: return 2 labels = [f(line[0]) for line in difflines] difflines = [line[1:].strip() for line in difflines] inputstr = "" + source + "" inputstr += "" + msg for label, line in zip(labels, difflines): if label == 1: inputstr += "" + line elif label == 0: inputstr += "" + line else: inputstr += "" + line source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1] source_ids = pad_assert(tokenizer, source_ids) return source_ids class FileDiffs(object): def __init__(self, diff_string): diff_array = diff_string.split("\n") self.file_name = diff_array[0] self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0] self.diffs = list() for line in diff_array[4:]: if line.startswith("@@"): self.diffs.append(str()) self.diffs[-1] += "\n" + line def review_commit(user="p4vv37", repository="ueflow", commit="610a8c7b02b946bc9e5e26e6dacbba0e2abba259"): tokenizer, model = prepare_models() # Get diff and commit metadata from GitHub API commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json() msg = commit_metadata["commit"]["message"] diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}", headers={"Accept": "application/vnd.github.diff"}) code_diff = diff_data.text # Parse diff into FileDiffs objects files_diffs = list() for file in code_diff.split("diff --git"): if len(file) > 0: fd = FileDiffs(file) files_diffs.append(fd) # Generate comments for each diff output = "" for fd in files_diffs: output += F"File:{fd.file_path}\n" source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text for diff in fd.diffs: inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu") inputs_mask = inputs.ne(tokenizer.pad_id) preds = model.generate(inputs, attention_mask=inputs_mask, use_cache=True, num_beams=5, early_stopping=True, max_length=100, num_return_sequences=2 ) preds = list(preds.cpu().numpy()) pred_nls = [tokenizer.decode(_id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False) for _id in preds] output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n" return output description = "An interface for running " \ "\"Microsoft CodeBERT CodeReviewer: Pre-Training for Automating Code Review Activities.\" " \ "(microsoft/codereviewer) on GitHub commits." examples = [ ["p4vv37", "ueflow", "610a8c7b02b946bc9e5e26e6dacbba0e2abba259"], ["microsoft", "vscode", "378b0d711f6b82ac59b47fb246906043a6fb995a"], ] iface = gr.Interface(fn=review_commit, description=description, inputs=["text", "text", "text"], outputs="text", examples=examples) iface.launch()