oxkitsune commited on
Commit
7b059da
·
1 Parent(s): a0e3696

webm webcam output?

Browse files
Files changed (4) hide show
  1. app.py +5 -10
  2. pyproject.toml +2 -2
  3. requirements.txt +1 -1
  4. uv.lock +0 -0
app.py CHANGED
@@ -76,6 +76,7 @@ def predict_depth(input_image):
76
  @rr.thread_local_stream("rerun_example_ml_depth_pro")
77
  def run_rerun(path_to_video):
78
  stream = rr.binary_stream()
 
79
 
80
  blueprint = rrb.Blueprint(
81
  rrb.Vertical(
@@ -93,15 +94,16 @@ def run_rerun(path_to_video):
93
  rr.send_blueprint(blueprint)
94
 
95
  yield stream.read()
 
96
  video_asset = rr.AssetVideo(path=path_to_video)
97
  rr.log("world/video", video_asset, static=True)
98
 
99
  # Send automatically determined video frame timestamps.
100
  frame_timestamps_ns = video_asset.read_frame_timestamps_ns()
101
 
102
- # load the video using opencv
103
  cap = cv2.VideoCapture(path_to_video)
104
- # loop through the video and log the frames using the video timestamps
 
105
  for i in range(len(frame_timestamps_ns)):
106
  ret, frame = cap.read()
107
  if not ret:
@@ -161,19 +163,12 @@ def run_rerun(path_to_video):
161
  yield stream.read()
162
 
163
 
164
- # Example images
165
- example_images = [
166
- "examples/lemur.jpg",
167
- "examples/cat.jpg",
168
- "examples/silly-cat.png",
169
- ]
170
-
171
  with gr.Blocks() as interface:
172
  gr.Markdown(
173
  """
174
  # DepthPro Rerun Demo
175
 
176
- [DepthPro](https://huggingface.co/apple/DepthPro) is a fast metric depth prediction model. Simply upload an image to predict its inverse depth map and focal length.
177
 
178
  High resolution videos will be automatically resized to 256x256 pixels, to speed up the inference and visualize multiple frames.
179
  """
 
76
  @rr.thread_local_stream("rerun_example_ml_depth_pro")
77
  def run_rerun(path_to_video):
78
  stream = rr.binary_stream()
79
+ print("video path:", path_to_video)
80
 
81
  blueprint = rrb.Blueprint(
82
  rrb.Vertical(
 
94
  rr.send_blueprint(blueprint)
95
 
96
  yield stream.read()
97
+
98
  video_asset = rr.AssetVideo(path=path_to_video)
99
  rr.log("world/video", video_asset, static=True)
100
 
101
  # Send automatically determined video frame timestamps.
102
  frame_timestamps_ns = video_asset.read_frame_timestamps_ns()
103
 
 
104
  cap = cv2.VideoCapture(path_to_video)
105
+ num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
106
+ print(f"Number of frames in the video: {num_frames}")
107
  for i in range(len(frame_timestamps_ns)):
108
  ret, frame = cap.read()
109
  if not ret:
 
163
  yield stream.read()
164
 
165
 
 
 
 
 
 
 
 
166
  with gr.Blocks() as interface:
167
  gr.Markdown(
168
  """
169
  # DepthPro Rerun Demo
170
 
171
+ [DepthPro](https://huggingface.co/apple/DepthPro) is a fast metric depth prediction model. Simply upload a video to visualize the depth predictions in real-time.
172
 
173
  High resolution videos will be automatically resized to 256x256 pixels, to speed up the inference and visualize multiple frames.
174
  """
pyproject.toml CHANGED
@@ -3,14 +3,14 @@ name = "rerun-apple-depth-pro"
3
  version = "0.1.0"
4
  description = "Add your description here"
5
  readme = "README.md"
6
- requires-python = ">=3.10"
7
  dependencies = [
8
  "attrs>=24.2.0",
9
  "depth-pro",
10
  "gradio>=4.44.1",
11
  "gradio-rerun>=0.0.8",
12
  "rerun-sdk==0.19.0",
13
- "spaces>=0.30.3",
14
  ]
15
 
16
  [tool.uv]
 
3
  version = "0.1.0"
4
  description = "Add your description here"
5
  readme = "README.md"
6
+ requires-python = ">=3.8"
7
  dependencies = [
8
  "attrs>=24.2.0",
9
  "depth-pro",
10
  "gradio>=4.44.1",
11
  "gradio-rerun>=0.0.8",
12
  "rerun-sdk==0.19.0",
13
+ "spaces>=0.30.4",
14
  ]
15
 
16
  [tool.uv]
requirements.txt CHANGED
@@ -80,7 +80,7 @@ semantic-version==2.10.0
80
  shellingham==1.5.4
81
  six==1.16.0
82
  sniffio==1.3.1
83
- spaces==0.30.3
84
  stack-data==0.6.3
85
  starlette==0.38.6
86
  sympy==1.13.3
 
80
  shellingham==1.5.4
81
  six==1.16.0
82
  sniffio==1.3.1
83
+ spaces==0.30.4
84
  stack-data==0.6.3
85
  starlette==0.38.6
86
  sympy==1.13.3
uv.lock CHANGED
The diff for this file is too large to render. See raw diff