import streamlit as st import time # record the audio imports import sounddevice as sd from scipy.io.wavfile import write import queue import sys import sounddevice as sd import soundfile as sf import numpy # Make sure NumPy is loaded before it is used in the callback # transcribe the audio imports import whisper import matplotlib.pyplot as plt import numpy as np import wave #StyleTTS2 imports import torch torch.manual_seed(0) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True import random random.seed(0) np.random.seed(0) # load packages import yaml from munch import Munch import torch from torch import nn import torch.nn.functional as F import torchaudio import librosa from nltk.tokenize import word_tokenize from models import * from utils import * from text_utils import TextCleaner textclenaer = TextCleaner() st.title(" 🎈North-American Accent Training App") st.caption("How would you sound like if you were English native speaker?") sample_rate_value=24000 # Audio Path audio_path = "recorded_audio.wav" # Global queue to insert audio into audio_queue = queue.Queue() def callback(indata, frames, time, status): """This is called (from a separate thread) for each audio block.""" if status: print(status, file=sys.stderr) audio_queue.put(indata.copy( )) # Keep the status of start/stop toggling if 'record_button_status' not in st.session_state: st.session_state.record_button_status = False # Toggle start/stop recording def click_record_button(): st.session_state.record_button_status = not st.session_state.record_button_status st.divider() col1, col2, c3, c4 = st.columns([1,1,1,1]) # dirty hack to put buttons closer with col1: record_button = st.button(":black_circle_for_record: Start Recording", on_click=click_record_button, key="rec_button", disabled=st.session_state.get("record_button_status", False)) with col2: stop_button = st.button(":black_square_for_stop: Stop Recording", on_click=click_record_button, key="stop_button", disabled=not st.session_state.get("record_button_status", True)) if record_button and st.session_state.record_button_status: with st.spinner('Recording...'): # Make sure the file is opened before recording anything: with sf.SoundFile(audio_path, mode='w', samplerate=sample_rate_value, channels=1) as file: with sd.InputStream(samplerate=sample_rate_value, channels=1, callback=callback): while True: if st.session_state.record_button_status: # get audio from the queue and save it to the file file.write(audio_queue.get()) else: break st.success('Finished recording!') ######### Transcribe Audio ######### whisper_model = whisper.load_model("base") result = whisper_model.transcribe(audio_path) transcribed_text = result["text"] st.write("You said: " + transcribed_text + "\n") audio_file = open(audio_path, 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format='audio/wav') to_mel = torchaudio.transforms.MelSpectrogram( n_mels=80, n_fft=2048, win_length=1200, hop_length=300) mean, std = -4, 4 def length_to_mask(lengths): mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) mask = torch.gt(mask+1, lengths.unsqueeze(1)) return mask def preprocess(wave): wave_tensor = torch.from_numpy(wave).float() mel_tensor = to_mel(wave_tensor) mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std return mel_tensor def compute_style(path): wave, sr = librosa.load(path, sr=24000) audio, index = librosa.effects.trim(wave, top_db=30) if sr != 24000: audio = librosa.resample(audio, sr, 24000) mel_tensor = preprocess(audio).to(device) with torch.no_grad(): ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) return torch.cat([ref_s, ref_p], dim=1) device = 'cuda' if torch.cuda.is_available() else 'cpu' # load phonemizer import phonemizer global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) config = yaml.safe_load(open("Models/LibriTTS/config.yml")) # load pretrained ASR model ASR_config = config.get('ASR_config', False) ASR_path = config.get('ASR_path', False) text_aligner = load_ASR_models(ASR_path, ASR_config) # load pretrained F0 model F0_path = config.get('F0_path', False) pitch_extractor = load_F0_models(F0_path) # load BERT model from Utils.PLBERT.util import load_plbert BERT_path = config.get('PLBERT_dir', False) plbert = load_plbert(BERT_path) model_params = recursive_munch(config['model_params']) model = build_model(model_params, text_aligner, pitch_extractor, plbert) _ = [model[key].eval() for key in model] _ = [model[key].to(device) for key in model] params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') params = params_whole['net'] for key in model: if key in params: print('%s loaded' % key) try: model[key].load_state_dict(params[key]) except: from collections import OrderedDict state_dict = params[key] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v # load params model[key].load_state_dict(new_state_dict, strict=False) # except: # _load(params[key], model[key]) _ = [model[key].eval() for key in model] from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule sampler = DiffusionSampler( model.diffusion.diffusion, sampler=ADPM2Sampler(), sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters clamp=False ) def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1): text = text.strip() ps = global_phonemizer.phonemize([text]) ps = word_tokenize(ps[0]) ps = ' '.join(ps) tokens = textclenaer(ps) tokens.insert(0, 0) tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) with torch.no_grad(): input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) t_en = model.text_encoder(tokens, input_lengths, text_mask) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=embedding_scale, features=ref_s, # reference from the same speaker as the embedding num_steps=diffusion_steps).squeeze(1) s = s_pred[:, 128:] ref = s_pred[:, :128] ref = alpha * ref + (1 - alpha) * ref_s[:, :128] s = beta * s + (1 - beta) * ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) # encode prosody en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(en) asr_new[:, :, 0] = en[:, :, 0] asr_new[:, :, 1:] = en[:, :, 0:-1] en = asr_new F0_pred, N_pred = model.predictor.F0Ntrain(en, s) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(asr) asr_new[:, :, 0] = asr[:, :, 0] asr_new[:, :, 1:] = asr[:, :, 0:-1] asr = asr_new out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later voice_path = "Demo/reference_audio/James2.wav" synth_voice_path = "synth.wav" start = time.time() noise = torch.randn(1,1,256).to(device) ref_s = compute_style(voice_path) wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1) rtf = (time.time() - start) / (len(wav) / sample_rate_value) print('Synthesized:') st.audio(wav, format='audio/wav', sample_rate=sample_rate_value) import scipy.io.wavfile scaled = np.int16(wav / np.max(np.abs(wav)) * 32767) scipy.io.wavfile.write(synth_voice_path, sample_rate_value, scaled) def __plot_helper(audio_file: str): raw = wave.open(audio_file) signal = raw.readframes(-1) signal = np.frombuffer(signal, dtype ="int16") f_rate = raw.getframerate() time = np.linspace( 0, # start len(signal) / f_rate, num = len(signal) ) return (time, signal) # shows the sound waves def visualize(first_wav: str, second_wav: str): fig, axs = plt.subplots(2) fig.suptitle("Original vs Native") plt.xlabel("Time") t1, s1 = __plot_helper(first_wav) axs[0].plot(t1,s1) axs[0].set_yticklabels([]) axs[0].set_yticks([]) t2, s2 = __plot_helper(second_wav) axs[1].plot(t2,s2) axs[1].set_yticklabels([]) axs[1].set_yticks([]) st.pyplot(plt) visualize(audio_path, synth_voice_path) #print('Reference Voice:') #display(ipd.Audio(voice_path, rate=24000, normalize=False))