Spaces:
Runtime error
Runtime error
File size: 15,627 Bytes
4cb60dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "59859b9a-f338-4d36-82dc-5cec9ca73676",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"177\n"
]
}
],
"source": [
"#StyleTTS2 imports\n",
"import torch\n",
"torch.manual_seed(0)\n",
"torch.backends.cudnn.benchmark = False\n",
"torch.backends.cudnn.deterministic = True\n",
"\n",
"import random\n",
"random.seed(0)\n",
"\n",
"import numpy as np\n",
"np.random.seed(0)\n",
"\n",
"# load packages\n",
"import time\n",
"import random\n",
"import yaml\n",
"from munch import Munch\n",
"import numpy as np\n",
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"import torchaudio\n",
"import librosa\n",
"from nltk.tokenize import word_tokenize\n",
"\n",
"from models import *\n",
"from utils import *\n",
"from text_utils import TextCleaner\n",
"textclenaer = TextCleaner()\n",
"\n",
"%matplotlib inline\n",
"\n",
"import sounddevice as sd\n",
"from scipy.io.wavfile import write\n",
"\n",
"import whisper"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f72784e2-47d9-4f4d-8b63-73bfa5075efb",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/elf/brego/dev/src/StyleTTS2/styleenv/lib/python3.11/site-packages/torch/cuda/__init__.py:138: UserWarning: CUDA initialization: CUDA driver initialization failed, you might not have a CUDA gpu. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)\n",
" return torch._C._cuda_getDeviceCount() > 0\n",
"/home/elf/brego/dev/src/StyleTTS2/styleenv/lib/python3.11/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\n",
" warnings.warn(\"torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.\")\n",
"/home/elf/brego/dev/src/StyleTTS2/styleenv/lib/python3.11/site-packages/torch/nn/modules/rnn.py:82: UserWarning: dropout option adds dropout after all but last recurrent layer, so non-zero dropout expects num_layers greater than 1, but got dropout=0.2 and num_layers=1\n",
" warnings.warn(\"dropout option adds dropout after all but last \"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"bert loaded\n",
"bert_encoder loaded\n",
"predictor loaded\n",
"decoder loaded\n",
"text_encoder loaded\n",
"predictor_encoder loaded\n",
"style_encoder loaded\n",
"diffusion loaded\n",
"text_aligner loaded\n",
"pitch_extractor loaded\n",
"mpd loaded\n",
"msd loaded\n",
"wd loaded\n"
]
}
],
"source": [
"to_mel = torchaudio.transforms.MelSpectrogram(\n",
" n_mels=80, n_fft=2048, win_length=1200, hop_length=300)\n",
"mean, std = -4, 4\n",
"\n",
"def length_to_mask(lengths):\n",
" mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)\n",
" mask = torch.gt(mask+1, lengths.unsqueeze(1))\n",
" return mask\n",
"\n",
"def preprocess(wave):\n",
" wave_tensor = torch.from_numpy(wave).float()\n",
" mel_tensor = to_mel(wave_tensor)\n",
" mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std\n",
" return mel_tensor\n",
"\n",
"def compute_style(path):\n",
" wave, sr = librosa.load(path, sr=24000)\n",
" audio, index = librosa.effects.trim(wave, top_db=30)\n",
" if sr != 24000:\n",
" audio = librosa.resample(audio, sr, 24000)\n",
" mel_tensor = preprocess(audio).to(device)\n",
"\n",
" with torch.no_grad():\n",
" ref_s = model.style_encoder(mel_tensor.unsqueeze(1))\n",
" ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))\n",
"\n",
" return torch.cat([ref_s, ref_p], dim=1)\n",
"\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"\n",
"# load phonemizer\n",
"import phonemizer\n",
"global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)\n",
"\n",
"config = yaml.safe_load(open(\"Models/LibriTTS/config.yml\"))\n",
"\n",
"# load pretrained ASR model\n",
"ASR_config = config.get('ASR_config', False)\n",
"ASR_path = config.get('ASR_path', False)\n",
"text_aligner = load_ASR_models(ASR_path, ASR_config)\n",
"\n",
"# load pretrained F0 model\n",
"F0_path = config.get('F0_path', False)\n",
"pitch_extractor = load_F0_models(F0_path)\n",
"\n",
"# load BERT model\n",
"from Utils.PLBERT.util import load_plbert\n",
"BERT_path = config.get('PLBERT_dir', False)\n",
"plbert = load_plbert(BERT_path)\n",
"\n",
"model_params = recursive_munch(config['model_params'])\n",
"model = build_model(model_params, text_aligner, pitch_extractor, plbert)\n",
"_ = [model[key].eval() for key in model]\n",
"_ = [model[key].to(device) for key in model]\n",
"\n",
"params_whole = torch.load(\"Models/LibriTTS/epochs_2nd_00020.pth\", map_location='cpu')\n",
"params = params_whole['net']\n",
"\n",
"\n",
"for key in model:\n",
" if key in params:\n",
" print('%s loaded' % key)\n",
" try:\n",
" model[key].load_state_dict(params[key])\n",
" except:\n",
" from collections import OrderedDict\n",
" state_dict = params[key]\n",
" new_state_dict = OrderedDict()\n",
" for k, v in state_dict.items():\n",
" name = k[7:] # remove `module.`\n",
" new_state_dict[name] = v\n",
" # load params\n",
" model[key].load_state_dict(new_state_dict, strict=False)\n",
"# except:\n",
"# _load(params[key], model[key])\n",
"_ = [model[key].eval() for key in model]\n",
"\n",
"from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule\n",
"\n",
"sampler = DiffusionSampler(\n",
" model.diffusion.diffusion,\n",
" sampler=ADPM2Sampler(),\n",
" sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters\n",
" clamp=False\n",
")\n",
"\n",
"def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):\n",
" text = text.strip()\n",
" ps = global_phonemizer.phonemize([text])\n",
" ps = word_tokenize(ps[0])\n",
" ps = ' '.join(ps)\n",
" tokens = textclenaer(ps)\n",
" tokens.insert(0, 0)\n",
" tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
" \n",
" with torch.no_grad():\n",
" input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)\n",
" text_mask = length_to_mask(input_lengths).to(device)\n",
"\n",
" t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
" bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
" d_en = model.bert_encoder(bert_dur).transpose(-1, -2) \n",
"\n",
" s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), \n",
" embedding=bert_dur,\n",
" embedding_scale=embedding_scale,\n",
" features=ref_s, # reference from the same speaker as the embedding\n",
" num_steps=diffusion_steps).squeeze(1)\n",
"\n",
"\n",
" s = s_pred[:, 128:]\n",
" ref = s_pred[:, :128]\n",
"\n",
" ref = alpha * ref + (1 - alpha) * ref_s[:, :128]\n",
" s = beta * s + (1 - beta) * ref_s[:, 128:]\n",
"\n",
" d = model.predictor.text_encoder(d_en, \n",
" s, input_lengths, text_mask)\n",
"\n",
" x, _ = model.predictor.lstm(d)\n",
" duration = model.predictor.duration_proj(x)\n",
"\n",
" duration = torch.sigmoid(duration).sum(axis=-1)\n",
" pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
"\n",
"\n",
" pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
" c_frame = 0\n",
" for i in range(pred_aln_trg.size(0)):\n",
" pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
" c_frame += int(pred_dur[i].data)\n",
"\n",
" # encode prosody\n",
" en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
" if model_params.decoder.type == \"hifigan\":\n",
" asr_new = torch.zeros_like(en)\n",
" asr_new[:, :, 0] = en[:, :, 0]\n",
" asr_new[:, :, 1:] = en[:, :, 0:-1]\n",
" en = asr_new\n",
"\n",
" F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
"\n",
" asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))\n",
" if model_params.decoder.type == \"hifigan\":\n",
" asr_new = torch.zeros_like(asr)\n",
" asr_new[:, :, 0] = asr[:, :, 0]\n",
" asr_new[:, :, 1:] = asr[:, :, 0:-1]\n",
" asr = asr_new\n",
"\n",
" out = model.decoder(asr, \n",
" F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
" \n",
" \n",
" return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dbb5cfce-f54c-4120-8f65-714216afca01",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/elf/brego/dev/src/StyleTTS2/styleenv/lib/python3.11/site-packages/whisper/transcribe.py:115: UserWarning: FP16 is not supported on CPU; using FP32 instead\n",
" warnings.warn(\"FP16 is not supported on CPU; using FP32 instead\")\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"You said: \n",
"\n"
]
},
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[3], line 17\u001b[0m\n\u001b[1;32m 15\u001b[0m noise \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mrandn(\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m256\u001b[39m)\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m 16\u001b[0m ref_s \u001b[38;5;241m=\u001b[39m compute_style(voice_path)\n\u001b[0;32m---> 17\u001b[0m wav \u001b[38;5;241m=\u001b[39m \u001b[43minference\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtranscribed_text\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mref_s\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43malpha\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbeta\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdiffusion_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43membedding_scale\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 18\u001b[0m rtf \u001b[38;5;241m=\u001b[39m (time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m start) \u001b[38;5;241m/\u001b[39m (\u001b[38;5;28mlen\u001b[39m(wav) \u001b[38;5;241m/\u001b[39m \u001b[38;5;241m24000\u001b[39m)\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mIPython\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdisplay\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mipd\u001b[39;00m\n",
"Cell \u001b[0;32mIn[2], line 90\u001b[0m, in \u001b[0;36minference\u001b[0;34m(text, ref_s, alpha, beta, diffusion_steps, embedding_scale)\u001b[0m\n\u001b[1;32m 88\u001b[0m text \u001b[38;5;241m=\u001b[39m text\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 89\u001b[0m ps \u001b[38;5;241m=\u001b[39m global_phonemizer\u001b[38;5;241m.\u001b[39mphonemize([text])\n\u001b[0;32m---> 90\u001b[0m ps \u001b[38;5;241m=\u001b[39m word_tokenize(\u001b[43mps\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m)\n\u001b[1;32m 91\u001b[0m ps \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(ps)\n\u001b[1;32m 92\u001b[0m tokens \u001b[38;5;241m=\u001b[39m textclenaer(ps)\n",
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
]
}
],
"source": [
"fs = 44100 # Sample rate\n",
"seconds = 6 # Duration of recording\n",
"myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=2)\n",
"sd.wait() # Wait until recording is finished\n",
"recorded_audio_path = 'recorded_audio.wav'\n",
"write(recorded_audio_path, fs, myrecording) # Save as WAV file \n",
"\n",
"whisper_model = whisper.load_model(\"base\")\n",
"result = whisper_model.transcribe(\"recorded_audio.wav\")\n",
"transcribed_text = result[\"text\"]\n",
"print(\"You said: \" + transcribed_text + \"\\n\")\n",
"\n",
"voice_path = \"Demo/reference_audio/James.wav\"\n",
"start = time.time()\n",
"noise = torch.randn(1,1,256).to(device)\n",
"ref_s = compute_style(voice_path)\n",
"wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1)\n",
"rtf = (time.time() - start) / (len(wav) / 24000)\n",
"import IPython.display as ipd\n",
"print('Original')\n",
"display(ipd.Audio(recorded_audio_path, rate=24000, normalize=False)) \n",
"print('Synthesized:')\n",
"display(ipd.Audio(wav, rate=24000, normalize=False))\n",
"print('Reference Voice:')\n",
"display(ipd.Audio(voice_path, rate=24000, normalize=False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c9ce7927-4672-4754-8bcf-c38667d8e01f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3a0691d-9fa3-4e69-be62-1a541c534381",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (styleenv)",
"language": "python",
"name": "styleenv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|