File size: 9,388 Bytes
4cb60dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "612692e6-fe5f-4787-86d9-c660bb9a21ec",
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'models'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 27\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mlibrosa\u001b[39;00m\n\u001b[1;32m     25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnltk\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtokenize\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m word_tokenize\n\u001b[0;32m---> 27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmodels\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[1;32m     28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;241m*\u001b[39m\n\u001b[1;32m     29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtext_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TextCleaner\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'models'"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "torch.manual_seed(0)\n",
    "torch.backends.cudnn.benchmark = False\n",
    "torch.backends.cudnn.deterministic = True\n",
    "\n",
    "import random\n",
    "random.seed(0)\n",
    "\n",
    "import numpy as np\n",
    "np.random.seed(0)\n",
    "\n",
    "#%cd ..\n",
    "\n",
    "# load packages\n",
    "import time\n",
    "import random\n",
    "import yaml\n",
    "from munch import Munch\n",
    "import numpy as np\n",
    "import torch\n",
    "from torch import nn\n",
    "import torch.nn.functional as F\n",
    "import torchaudio\n",
    "import librosa\n",
    "from nltk.tokenize import word_tokenize\n",
    "\n",
    "from models import *\n",
    "from utils import *\n",
    "from text_utils import TextCleaner\n",
    "textclenaer = TextCleaner()\n",
    "\n",
    "%matplotlib inline\n",
    "\n",
    "device = 'cuda'\n",
    "\n",
    "to_mel = torchaudio.transforms.MelSpectrogram(\n",
    "    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)\n",
    "mean, std = -4, 4\n",
    "\n",
    "def length_to_mask(lengths):\n",
    "    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)\n",
    "    mask = torch.gt(mask+1, lengths.unsqueeze(1))\n",
    "    return mask\n",
    "\n",
    "def preprocess(wave):\n",
    "    wave_tensor = torch.from_numpy(wave).float()\n",
    "    mel_tensor = to_mel(wave_tensor)\n",
    "    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std\n",
    "    return mel_tensor\n",
    "\n",
    "def compute_style(ref_dicts):\n",
    "    reference_embeddings = {}\n",
    "    for key, path in ref_dicts.items():\n",
    "        wave, sr = librosa.load(path, sr=24000)\n",
    "        audio, index = librosa.effects.trim(wave, top_db=30)\n",
    "        if sr != 24000:\n",
    "            audio = librosa.resample(audio, sr, 24000)\n",
    "        mel_tensor = preprocess(audio).to(device)\n",
    "\n",
    "        with torch.no_grad():\n",
    "            ref = model.style_encoder(mel_tensor.unsqueeze(1))\n",
    "        reference_embeddings[key] = (ref.squeeze(1), audio)\n",
    "    \n",
    "    return reference_embeddings\n",
    "\n",
    "# load phonemizer\n",
    "import phonemizer\n",
    "global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)\n",
    "\n",
    "config = yaml.safe_load(open(\"Models/LJSpeech/config.yml\"))\n",
    "\n",
    "# load pretrained ASR model\n",
    "ASR_config = config.get('ASR_config', False)\n",
    "ASR_path = config.get('ASR_path', False)\n",
    "text_aligner = load_ASR_models(ASR_path, ASR_config)\n",
    "\n",
    "# load pretrained F0 model\n",
    "F0_path = config.get('F0_path', False)\n",
    "pitch_extractor = load_F0_models(F0_path)\n",
    "\n",
    "# load BERT model\n",
    "from Utils.PLBERT.util import load_plbert\n",
    "BERT_path = config.get('PLBERT_dir', False)\n",
    "plbert = load_plbert(BERT_path)\n",
    "\n",
    "model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert)\n",
    "_ = [model[key].eval() for key in model]\n",
    "_ = [model[key].to(device) for key in model]\n",
    "\n",
    "params_whole = torch.load(\"Models/LJSpeech/epoch_2nd_00100.pth\", map_location='cpu')\n",
    "params = params_whole['net']\n",
    "\n",
    "for key in model:\n",
    "    if key in params:\n",
    "        print('%s loaded' % key)\n",
    "        try:\n",
    "            model[key].load_state_dict(params[key])\n",
    "        except:\n",
    "            from collections import OrderedDict\n",
    "            state_dict = params[key]\n",
    "            new_state_dict = OrderedDict()\n",
    "            for k, v in state_dict.items():\n",
    "                name = k[7:] # remove `module.`\n",
    "                new_state_dict[name] = v\n",
    "            # load params\n",
    "            model[key].load_state_dict(new_state_dict, strict=False)\n",
    "#             except:\n",
    "#                 _load(params[key], model[key])\n",
    "_ = [model[key].eval() for key in model]\n",
    "\n",
    "from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule\n",
    "\n",
    "sampler = DiffusionSampler(\n",
    "    model.diffusion.diffusion,\n",
    "    sampler=ADPM2Sampler(),\n",
    "    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters\n",
    "    clamp=False\n",
    ")\n",
    "\n",
    "def inference(text, noise, diffusion_steps=5, embedding_scale=1):\n",
    "    text = text.strip()\n",
    "    text = text.replace('\"', '')\n",
    "    ps = global_phonemizer.phonemize([text])\n",
    "    ps = word_tokenize(ps[0])\n",
    "    ps = ' '.join(ps)\n",
    "\n",
    "    tokens = textclenaer(ps)\n",
    "    tokens.insert(0, 0)\n",
    "    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)\n",
    "        text_mask = length_to_mask(input_lengths).to(tokens.device)\n",
    "\n",
    "        t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
    "        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
    "        d_en = model.bert_encoder(bert_dur).transpose(-1, -2) \n",
    "\n",
    "        s_pred = sampler(noise, \n",
    "              embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,\n",
    "              embedding_scale=embedding_scale).squeeze(0)\n",
    "\n",
    "        s = s_pred[:, 128:]\n",
    "        ref = s_pred[:, :128]\n",
    "\n",
    "        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)\n",
    "\n",
    "        x, _ = model.predictor.lstm(d)\n",
    "        duration = model.predictor.duration_proj(x)\n",
    "        duration = torch.sigmoid(duration).sum(axis=-1)\n",
    "        pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
    "\n",
    "        pred_dur[-1] += 5\n",
    "\n",
    "        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
    "        c_frame = 0\n",
    "        for i in range(pred_aln_trg.size(0)):\n",
    "            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
    "            c_frame += int(pred_dur[i].data)\n",
    "\n",
    "        # encode prosody\n",
    "        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
    "        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
    "        out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), \n",
    "                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
    "        \n",
    "    return out.squeeze().cpu().numpy()\n",
    "\n",
    "# synthesize a text\n",
    "text = ''' Hi James! How are you? '''\n",
    "\n",
    "start = time.time()\n",
    "noise = torch.randn(1,1,256).to(device)\n",
    "wav = inference(text, noise, diffusion_steps=5, embedding_scale=1)\n",
    "rtf = (time.time() - start) / (len(wav) / 24000)\n",
    "print(f\"RTF = {rtf:5f}\")\n",
    "import IPython.display as ipd\n",
    "display(ipd.Audio(wav, rate=24000))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e28c4e1a-ddb6-4914-8b26-a6053e90c272",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python (styleenv)",
   "language": "python",
   "name": "styleenv"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}