import sys sys.path.append('wild-gaussian-splatting/mast3r/') sys.path.append('demo/') import gradio as gr import torch from mast3r.demo import get_args_parser from mast3r_demo import mast3r_demo_tab from gs_demo import gs_demo_tab torch.backends.cuda.matmul.allow_tf32 = True if __name__ == '__main__': # parser = get_args_parser() # args = parser.parse_args() # if args.server_name is not None: # server_name = args.server_name # else: # server_name = '0.0.0.0'# if args.local_network else '127.0.0.1' # weights_path = '/app/wild-gaussian-splatting/mast3r/checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth' # weights_path = "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"#args.weights if args.weights is not None else + MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric # device = device = 'cuda' if torch.cuda.is_available() else 'cpu' # chkpt_tag = hash_md5(weights_path) with gr.Blocks() as demo: with gr.Tabs(): with gr.Tab("MASt3R Demo"): mast3r_demo_tab() with gr.Tab("Gaussian Splatting Demo"): gs_demo_tab() demo.launch(show_error=True, share=None, server_name=None, server_port=None) # demo.launch(show_error=True, share=None, server_name='0.0.0.0', server_port=5555) # python3 demo.py --weights "/app/mast3r/checkpoints/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth" --device "cuda" --server_port 3334 --local_network "$@"