Spaces:
Sleeping
Sleeping
File size: 9,526 Bytes
c750472 7085ded c750472 7085ded c750472 7085ded c750472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import streamlit as st
from dotenv import load_dotenv
import PyPDF2
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain_community.llms import HuggingFaceHub
from langchain_community.vectorstores import Chroma
import pandas as pd
import glob
import os
import re
from PyPDF2 import PdfReader
#tempat vectordb
dirload = '24feb24-openaiv2'
dirsave = "terbaru"
#embeddings
embeddings = OpenAIEmbeddings()
def import_text_file(file_path):
try:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
return text
except FileNotFoundError:
print(f"Error: File not found at path: {file_path}")
return ""
except Exception as e:
print(f"Error reading file: {e}")
return ""
def import_text_file(file_path):
try:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
return text
except FileNotFoundError:
print(f"Error: File not found at path: {file_path}")
return ""
except Exception as e:
print(f"Error reading file: {e}")
return ""
#list semua pdf dalam direktori
def list_pdf_files_and_save_titles(folder_path):
pdf_file_titles = []
try:
files = os.listdir(folder_path)
pdf_files = [file for file in files if file.lower().endswith('.pdf')]
for pdf_file in pdf_files:
pdf_file_titles.append(pdf_file)
except FileNotFoundError:
print(f"Folder not found: {folder_path}")
except Exception as e:
print(f"An error occurred: {e}")
return pdf_file_titles
#read the document
def extract_text_from_pdf(pdf_path):
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ''
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n"
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator=" ",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
vectorstore = Chroma(persist_directory=dirload, embedding_function=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
#load vector
vectorstore = Chroma(persist_directory=dir, embedding_function=embeddings)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
st.set_page_config(page_title="Selamat Datang Di Indonesian Climate Bot",
page_icon=":sun_behind_rain_cloud:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Indonesian Climate Chatbot :sun_behind_rain_cloud:")
user_question = st.text_input("Tanyakan padaku seputar perubahan iklim:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.header(":blue[Jumlah Dokumen dan Berita]")
banyakDokumen = import_text_file("banyakdokumen.txt")
banyakBerita = import_text_file("banyakberita.txt")
#showing the regulation docs
with open("file_titles.txt", "r") as file:
my_list = file.readlines() # Reads all lines into a list
# Remove trailing newlines (if necessary)
file_titles = [item.strip() for item in my_list]
#show pdf files yang dipakai
with st.container(height=300):
s = ''
for i in file_titles:
s += "- " + i + "\n"
st.markdown(s)
st.write("jumlah dokumen regulasi: "+ ":green[{}]".format(banyakDokumen))
st.write("jumlah dokumen berita: "+ ":green[{}]".format(banyakBerita))
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# if st.button("Process"):
# with st.spinner("Processing"):
# # get pdf text
# raw_text = get_pdf_text(pdf_docs)
# # get the text chunks
# text_chunks = get_text_chunks(raw_text)
# # create vector store
# vectorstore = get_vectorstore(text_chunks)
# # create conversation chain
# st.session_state.conversation = get_conversation_chain(
# vectorstore)
if st.button("Re-Processing New Data"):
with st.spinner("Processing..."):
# BERITA
# Find a CSV files in the directory
sumber = glob.glob("berita/*.csv")
df = pd.read_csv(sumber[0])
banyakBerita = len(df)
print("sumber berita ditemukan")
#update banyak berita txt
with open("banyakBerita.txt", "w") as file:
file.write(str(banyakBerita))
print("update file text berita berhasil")
#combining and converting
df["combined"] = ""
for row in range(len(df)):
kombinasi = "berita ke-" + str(row+1) + " \n " + "judul: " + str(df['title'].loc[row]) + " \n " + "link: "+ str(df['url'].loc[row]) + " \n " + "tanggal rilis: " + str(df['datetime'].loc[row]) + " \n " + "penulis: " + str(df['author'].loc[row]) + " \n " + "isi berita: " + str(df['text'].loc[row]) + " \n " + "sumber: " + str(df['source'].loc[row]) + " \n "
df['combined'].loc[row] = kombinasi
listberita = df["combined"].tolist()
textberita = " ".join(listberita)
print("combining and converting berhasil")
# directory ke pdf regulasi
folder_path = 'pdf/'
file_titles = list_pdf_files_and_save_titles(folder_path)
banyakDokumen = len(file_titles)
#saving the file titles
with open("file_titles.txt", "w") as file:
for item in file_titles:
file.write(item + "\n")
#update banyak dokumen txt
with open("banyakDokumen.txt", "w") as file:
file.write(str(banyakDokumen))
print("update file text dokumen berhasil")
#converting ke text untuk pdf dokument
textdokumen=''
for doc in range(len(file_titles)):
judul = " \n " + "AWAL DOKUMEN KE- "+ str(doc+1) + " \n "
batas = "=========="
akhir = " \n " + "AKHIR DOKUMEN KE- "+ str(doc+1) + " \n "
textdokumen = textdokumen + "{}{}{}{}{}".format(judul,batas,extract_text_from_pdf('pdf/'+file_titles[doc]),batas,akhir)
print("converting ke text untuk pdf dokumen berhasil")
#combine text berita sama dokumen
final = textdokumen
# + textberita
print("combining 2 sumber pelatihan berhasil")
#splitting
texts = get_text_chunks(final)
print("splitting final text berhasil")
#save dengan chroma
vectorstore = Chroma.from_texts(texts,
embeddings,
persist_directory=dirsave)
# persist the db to disk
vectorstore.persist()
vectorstore = None
print("simpan hasil vektor ke chroma berhasil")
st.write(":orange[Pembaharuan Berhasil!]")
# Create an empty placeholder at the bottom
placeholder = st.sidebar.empty()
# Add the label within the placeholder
with placeholder:
st.markdown("**by Oriza Nurfajri**")
if __name__ == '__main__':
main()
|