import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.css_html_js import custom_css, custom_js
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
ABOUT_TEXT,
EXAMPLE_CONFIG_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
change_tab,
restart_space,
load_dataset_repo,
process_model_name,
process_model_type,
)
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
ALL_COLUMNS_MAPPING = {
"backend.name": "Backend 🏭",
"backend.torch_dtype": "Dtype 📥",
"optimizations": "Optimizations 🛠️",
"quantization": "Quantization 🗜️",
#
"weight_class": "Class 🏋️",
"model_type": "Type 🤗",
#
"generate.peak_memory(MB)": "Memory (MB) ⬇️",
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
"generate.energy_consumption(kWh/token)": "Energy (kWh/token) ⬇️",
"best_score": "Best Score (%) ⬆️",
#
"best_scored_model": "Best Scored LLM 🏆",
}
ALL_COLUMNS_DATATYPES = [
"str",
"str",
"str",
"str",
#
"str",
"str",
#
"number",
"number",
"number",
"str",
#
"markdown",
]
SORTING_COLUMN = ["best_score"]
SORTING_ASCENDING = [False]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load data
benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv")
# merge on model
merged_df = benchmark_df.merge(
clusters_df, left_on="model", right_on="best_scored_model"
)
# fix energy consumption nans
merged_df["generate.energy_consumption(kWh/token)"].fillna("N/A", inplace=True)
# add optimizations
merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
lambda x: "BetterTransformer" if x else "None"
)
# add quantization scheme
merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
)
# # distance to 100% score
# score_distance = 100 - merged_df["best_score"]
# # distance to 0s latency
# latency_distance = merged_df["generate.latency(s)"]
# # distance to 0MB memory
# memory_distance = merged_df["forward.peak_memory(MB)"]
# # add perf distance
# merged_df["perf_distance"] = (
# score_distance**2 + latency_distance**2 + memory_distance**2
# ) ** 0.5
return merged_df
def get_benchmark_table(bench_df):
# add * to quantized models score
copy_df = bench_df.copy()
# add * to quantized models score since we can't garantee the score is the same
copy_df["best_score"] = copy_df.apply(
lambda x: f"{x['best_score']}**"
if x["backend.quantization_strategy"] in ["bnb", "gptq"]
else x["best_score"],
axis=1,
)
# sort
copy_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
# filter
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
# rename
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
# transform
copy_df["Type 🤗"] = copy_df["Type 🤗"].apply(process_model_type)
copy_df["Best Scored LLM 🏆"] = copy_df["Best Scored LLM 🏆"].apply(
process_model_name
)
return copy_df
def get_benchmark_plot(bench_df):
fig = px.scatter(
bench_df,
y="best_score",
x="generate.throughput(tokens/s)",
size="generate.peak_memory(MB)",
color="model_type",
custom_data=list(ALL_COLUMNS_MAPPING.keys()),
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Generation Throughput (tokens/s)",
yaxis_title="Open LLM Score (%)",
legend_title="Model Type",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="
".join(
[
f"{ALL_COLUMNS_MAPPING[key]}: %{{customdata[{i}]}}"
for i, key in enumerate(ALL_COLUMNS_MAPPING.keys())
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
score,
memory,
benchmark="Succeeded-1xA100-80GB",
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["best_score"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
A100_df = get_benchmark_df(benchmark="Succeeded-1xA100-80GB")
A100_table = get_benchmark_table(A100_df)
A100_plot = get_benchmark_plot(A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
# leaderboard tabs
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("🖥️ A100-80GB Benchmark 🏆", id=0):
gr.HTML(
"👉 Scroll to the right 👉 for more columns.", elem_id="descriptive-text"
)
# Original leaderboard table
A100_leaderboard = gr.components.Dataframe(
value=A100_table,
datatype=ALL_COLUMNS_DATATYPES,
headers=list(ALL_COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("🖥️ A100-80GB Plot 📊", id=1):
gr.HTML(
"👆 Hover over the points 👆 for additional information.",
elem_id="descriptive-text",
)
# Original leaderboard plot
A100_plotly = gr.components.Plot(
value=A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
with gr.TabItem("Control Panel 🎛️", id=2):
gr.HTML(
"Use this control panel to filter the leaderboard's table and plot.",
elem_id="descriptive-text",
)
# control panel interface
with gr.Row():
with gr.Column(scale=1):
search_bar = gr.Textbox(
label="Model 🤗",
info="🔍 Search for a model name",
elem_id="search-bar",
)
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Open LLM Score 📈",
info="🎚️ Slide to minimum Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) 📈",
info="🎚️ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Row():
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends 🏭",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="☑️ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Dtypes 📥",
choices=["float32", "float16"],
value=["float32", "float16"],
info="☑️ Select the load dtypes",
elem_id="dtype-checkboxes",
)
with gr.Column(scale=2):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations 🛠️",
choices=["None", "BetterTransformer"],
value=["None", "BetterTransformer"],
info="☑️ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter 🚀",
elem_id="filter-button",
)
with gr.TabItem("About 📖", id=3):
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")
demo.load(
change_tab,
A100_tabs,
_js=custom_js,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
memory_slider,
],
[A100_leaderboard, A100_plotly],
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()